
1 Hashing

Hashing is covered by undergraduate courses like �Algo I�. However, there is
much more to say on this topic. Here, we focus on two selected topics: perfect
hashing and cockoo hashing. In general, the task of hashing is to store a set S of
n elements where each element x ∈ S has a unique key, k(e) ∈ U = {0, . . . u−1},
subject to the following operations

• insert(x): insert a new element x

• delete(k): remove the element x with k(x) = k

• search(k): return (a pointer to) the element x with k(x) = k

Observe that the third operation is essentially the access operator in arrays, with
U being the set of array indices. For this reason, data structures for hashing are
often called �associative arrays�. (Other names are �hash tables�, �dictionaries�
and many more).

Indeed, if n = Θ(u), a normal array of size u will solve the problem optimally.
Hence, we focus on the case n = o(u) in the following, and we only want to use
O(n) space.

Baseline Algorithms

linked list balanced seach tree sorted resizable array
insert Θ(1) O(log n) O(n)
delete O(n) O(log n) O(n)
search O(n) O(log n) O(log n)

We already know that there are much better solutions, e.g. hash tables with
chaining (or linear probing):

hashing with chaining
insert O(1) amortised (resize)
delete O(1) expected (collision), amortised (resize)
search O(1) expected (collision)
space O(n) worst case

1.1 Perfect Hashing

We can do better if the keys are static (known in advance), namely achieve O(1)
worst case search time.

perfect hashing
search Θ(1) worst case

construction O(n) expected
space O(n) expected

Recomended Reading

1

• M.E. Fredman, J.Komlós, E. Szemerédi: Storing a Sparse Table with O(1)
Worst Case Access Time. J. ACM 31(3):538-544 (1984)

• T.H. Cormen, C.E. Leiserson, R.L.Rivest, C.Stein: Introduction to Algo-
rithms (3rd ed.). MIT Press, 2009. Chapter 11.5

• K. Mehlhorn, P.Sanders: Algorithms and Data Structures: The Basic
Toolbox. Springer, 2008. Chapter 4.5

We begin with the observation that if the hash table is large enough, then even
a single collision is unlikely to occur:

Lemma. If we store n keys in a hash table of size m = n2 with a universal
(�truly random�) hash function, the probability of a single collision is at most
1/2.

Proof. By the properties of universal hashing, the probability that a pair (x, y)
collides is 1/m:

P [h(x) = h(y)] = 1/n2 for x 6= y ,

if h denotes the hash function chose at random from a universal class of hash
functions. In total, these are

(
n
2

)
pairs. Hence, the expected number of collisions

is

E[#collision] =
(

n

2

)
1
n2

=
n2 − n

2
· 1
n2

=
1
2
− 1

2n

<
1
2

.

Now Markov's inequality says P [X ≥ t] ≤ E[X]/t for any random variable X
and any t. Applying this with X = #collisions and t = 1, we get

P [#collision ≥ 1] ≤ E[#collision]
1

<
1
2

.

However, O(n2) space is prohibitive. To bring this space down to linear, we
adopt a two-level approach by �rst hashing into a table of size O(n) as in hashing
with chaining, and then, instead of chaining, using the quadratic approach from
above for each �rst level bucket separately.

2

We only have to make sure that the sum of the sizes of the secondary tables
is not too big. For this, we let ni denote the number of items that get hashed
to the i-th bucket with the primary hash function (ni = |{x | h(x) = i}|). We
can then show the following

Lemma. With universal hashing and a hash table of size m = n,

E

[
m∑

i=1

n2
i

]
≤ 2n

.

Proof. First note ∑
n2

i =
∑

(2
(

ni

2

)
+ ni)

= 2
∑(

ni

2

)
+
∑

ni

= 2
∑(

ni

2

)
+ n .

Now

E
[∑

n2
i

]
= E

[
2
∑(

ni

2

)
+ n

]
= n + 2E

[∑(
ni

2

)]
.

But
∑(

ni

2

)
is the total number of pairs that collide (as

(
ni

2

)
is the number of

pairs colliding in bucket i). And because P [h(x) = h(y)] = 1/m for x 6= y
(using universal hashing), we have

E

[∑(
ni

2

)]
=

(
n

2

)
︸︷︷︸

all pairs

· 1
m︸︷︷︸

prob. of collision

=
n− 1

2
,

3

so

E
[∑

n2
i

]
= n + 2

n− 1
2

= 2n− 1
< 2n

With Markov's inequatlity (on X =
∑

n2
i and t = 4n), we can show that

P
[∑

n2
i ≥ 4n

]
≤ 1/2. So, on average we need less than 2 trials for the primary

hash functions to �nd one such that the combined sizes of the secondary hash
functions is at most 4n. Also, for any secondary hash function we need on
average two trials such that they are collision free, so the construction time is
linear in expectation.

1.2 Cuckoo Hashing

Cuckoo hashing
insert O(1) expected (rehash), amortized (rebuild)
delete O(1) expected(rehash), amortized (rebuild)
search O(1) worst case
space O(n) worst case

Cuckoo Hashing should be directly compared with hashing with chaining: for
search, we get worst case instead of expected, amortized times. (It can be shown
that the expected worst case time for hashing with chaining is Θ(log n/ log log n)
or, in the presence of two hash tables, Θ(log log n). Similar worst case bounds
apply for linear probing.)

Recomended Reading

• R. Pagh, F.F. Rodler: Cuckoo Hashing. J. Algorithms 51(2): 122-144
(2004)

• R. Pagh: Cuckoo Hashing for Undergraduates. Lecture note IT University
of Copenhagen. Available online at http://www.it-c.dk/people/pagh/
papers/cuckoo-undergrad.pdf (2006)

• A. Schulz: Kuckucks-Hashing. Lecture note, Universität Münster, WS10/11.
Available at http://wwwmath.uni-muenster.de/logik/Personen/Schulz/
WS10/VL16.pdf

The idea of cuckoo hashing is to use two hash tables T1 and T2 of size m = 2n
each, and two hash functions h1 and h2, such that any key x is stored at either
T1 [h1(x)] or T2 [h2(x)]. Hence, the search procedure is particularly easy:

function search(x):
if(T1 [h1(x)] = x or T2 [h2(x)] = x)return true;

4

Also, the deletion of keys is as simple as the search (apart from rebuilding
the table when n becomes too small - we will consider this at the end of this
lecture).

The real �problems� arise when trying to insert a new element -� it could be
that both possible positions are already occupied! We �rst give the insertion
procedure and then analyse its performance.

procedure insert(x):
if search(x) then return;
k := 1;
repeat maxLoop times:

swap x with Tk [hk(x)];
if(x = ⊥):

n++;
if(n > m/2):

rehash(2m);
return;

k := 3− k;
rehash(m);
insert(x);

Example.

x ∈ S h1(x) h2(x)
A 3 2
B 5 2
C 3 6
D 2 4
E 5 2
F 2 6
G 3 4

insert(A); insert(B); insert(C); insert(D); insert(E);

5

insert(F); insert(G);

The algorithm can not insert G because the elements are shifted in an endless
loop. Eventually maxLoop iterations are performed and the table is rehashed.

In the analysis below, we will show that the probability of making maxLoop
iterations is low (similar to hashing with chaining, where one shows that the
probability of large buckets is low).

We need the concept of (c, k)-universal hash functions.

De�nition. A family {hi}i∈I , hi : U → {0, . . . ,m− 1}is called (c, k)-universal
if for any k distinct elements x1, . . . , xk ∈ U and all y1, . . . , yk ∈ {0, . . . ,m− 1}

P [hi(x1) = y1, . . . , hi(xk) = yk] ≤ c/mk

for a uniform random i ∈ I.

(Observe that (1, 1)-universal classes are exactly those we need for �standard�
universal hashing.) In words, the above de�nition says that for any k distinct
elements x1, . . . , xk, their hash codes hi(x1), . . . , hi(xk) are independent ran-
dom variables, and the hash code for any �xed xi is uniformly distributed in
{0, . . . ,m− 1}.

For cuckoo hashing, we need two (1, O(log n))-universal hash functions. (By
a result of Siegel [FOCS'89, pp. 20-25]), such functions exist, can be computed
in O(1) time, and need O(log n) space.)

We introduce the cuckoo graph: it is a bipartite graph where the vertices
correspond to the 2m table entries of T1 and T2, and there is an edge between
T1[i] and T2[j] i� ∃x ∈ S : h1(x) = i and h2(x) = j (hence n edges in total).

Example. Continuing the previous example, after the instertion of F the cuckoo
graph looks as follows:

6

Now observe that a sequence of consecutive replacements in the insertion
algorithm corresponds to a walk in the cuckoo graph. We want to analyze
the probability that an insertion fails, i.e., that there are more than maxLoop
replacements. The walk h1(x1), . . . , h1/2(xt) may contain up to two distinct cy-
cles. We make a case distinction on the number of cycles. Let us �x maxLoop=
6 log n.

1. The walk contains no cycle so a rehash is performed if t >maxLoop. For
a walk to have the length t all the cells on the walk have to be occupied.
The probability that some cell x is occupied is

P [T1 [h1(x)] occupied] ≤
∑
y∈S
x 6=y

P [h1(y) = h1(x)]

≤ (n− 1)
m

≤ 1
2

.

and the probability that two cells are occupied is

P [T1 [h1(x1)] occupied and T1 [h2(x2)] occupied]

≤
∑

y1,y2∈S

P [h1(y1) = h1(x1), h2(y2) = h2(x2)]

=
∑

y1,y2∈S

P [h1(y1) = h1(x1)] · P [h1(y2) = h1(x1)]

≤ n2

m2

=
1
4

and so on and so forth. In general,

P [t cells occupied] ≤ 1/2t = 1/n6 ,

so a rehash occurs with probability ≤ 1/n6 ≤ 1/n2. Assuming that no
rehash occurs, the expected running time in this case is therefore

E [#cells occupied] ≤
6 log n∑
t=1

t · 2−t

≤
∞∑

t=1

t · 2−t

= 2 = O(1) .

2. The walk contains exactly one cycle. A rehash is performed if t >maxLoop.
Look at the three parts of the walk and their length:

7

(a) from h1(x1) to h2(xj), l1 = j

(b) from h1(xj+1) to h2(xi+j−1), l2 = i− 1 < l1

(c) from h2(xi+j) zo h1(xt), l3 = t− (i + j) + 1

If l1 < t/3 then l1 + l2 < 2t/3 and hence l3 > t/3. If l3 < t/3 then
l1 + l2 < 2t/3 and hence l1 > t/3 so at least one of the parts 1 or 3 are of
length > t/3, and both parts consist of distinct elements from S. Hence,
by the analysis of �rst case we get

P [rehash] < P

[
t

3
di�erent cells occupied

]
≤ 1

2t/3
=

1
n2

.

Also, the expected running time (assuming that no rehash occurs) is again
constant.

8

