# Advanced Data Structures - Lecture 10 

Mihai Herda

12.01.2012

## 1 Succinct Data Structures

We now look at the problem of representing data structures very space efficiently. A data structure is called succinct if its space occupancy is $\log _{2} U(n) \cdot(1+o(1))$ bits, if there are $U(n)$ objects of size $n$ in the universe. Note that this is already the space needed to distinguish between the objects in the universe, hence this space is asymptotically optimal in the Kolomogorov sense.

## Example 1.

1. Permutations of $[1, n]: U(n)=n$ !
$\Rightarrow \lg U(n)=\lg \left(\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right)=n \lg n-\Theta(n)$
Hence storing permutations in length-n arrays is succinct.
2. Strings over $\sum=\{1, \ldots, \sigma\}$ of length $n: U(n)=\sigma^{n}$
$\Rightarrow \lg U(n)=n \lg \sigma$
Hence storing strings as arrays of chars is succinct (assuming all char codes are being used).
3. Ordered trees of $n$ nodes: $U(n)=$ with Catalan number $\approx \frac{4^{n}}{n^{\frac{3^{2}}{}} \sqrt{\pi}} \Rightarrow \lg U(n) \approx 2 n-\Theta(\lg n)$

Hence storing trees in a pointer-based representation is asymptotically not optimal, hence not succint.

### 1.1 Succinct Trees

The aim is to represent a static ordered tree of $n$ nodes using $2 n+o(n)$ bits, while still being able to work with the tree as if it were stored in a pointer-based representation.
In particular, we want to support the following operations, all in $O(1)$ time:

- parent $(v)$ : parent node of $v$

- first_child(v): leftmost child of $v$
- next_sibling $(v)$ : next sibling of $v$
- is_leaf $(v)$ : test if $v$ is a leaf
- is_ancestor $(u, v)$ : test if $u$ is ancestor of $v$
- subtree_size(v): number of nodes below $v$
- depth $(v)$ : number of nodes on the root-to- $v$ path


### 1.1.1 Balanced Parentheses (BP)

We represent the tree $T$ as its sequence of balanced parentheses. This is obtained during a $D F S$ through $T$, writing an opening parenthesis '(' when a node is encountered for the first time, and a closing parenthesis ')' when it is seen last. Then a node can be identified by a pair of matching parentheses ' $(\ldots)$ '. We adopt the convention of identifying nodes by the position of the opening parenthesis in the BP sequence.

## Example 2.



12


We can represent the BPS in a bit-string $B$ of length $2 n$ by encoding '(' as ' 1 ' and ')' as ' 0 '. Let us define the excess of a position $1 \leq i \leq 2$ in $B$ as the number of ('s minus the number of )'s in the prefix of $B$ up to position $i$ :

Definition 1. $\operatorname{excess}(B, i)=\left|\left\{j \leq i: B[j]=^{\prime}\left({ }^{\prime}\right\}|-|\left\{j \leq i: B[j]==^{\prime}\right)^{\prime}\right\}\right|$

Note that the excess is never negative and it is equal to 0 only for the last position $i=2 n$.

## Example 3.



### 1.1.2 Reduction to Core Operations

The navigational operations can be reduced to the following 4 core operations:
$\operatorname{rank}_{( }(B, i)=$ number of ('s in $B[0, i]$
$\operatorname{rank}_{)}(B, i)=$ number of )'s in $B[0, i]$
findclose $(B, i)=$ position of matching closing parenthesis if $B[i]={ }^{\prime}\left({ }^{\prime}\right.$
$\operatorname{enclose}(B, i)=$ position $j$ of the opening parenthesis such that ( $j$, findclose $(j)$ ) encloses ( $i$, findclose $(i)$ ) most tightly.

## Example 4.

$B=((1)())()(\underbrace{\sqrt[10]{(0)}()()}_{\text {endoseat }(5)=10}$
The operations can be expressed as follows:

- $\operatorname{parent}(i)=\operatorname{enclose}(B, i)$ (if $i \neq 0$, otherwise root)
- first_child $(i)=i+1$ (if $B[i]={ }^{\prime}\left({ }^{\prime}\right.$, otherwise leaf)
- next_sibling $(i)=$ findclose $(i)+1$ (if $B[$ findclose $(i)+1]=^{\prime}{ }^{\prime}$, otherwise $i$ is last sibling $)$
- is_leaf $(i)=$ true iff $\left.B[i+1]=^{\prime}\right)^{\prime}$
- is_ancestor $(i, j)=$ true iff $i \leq j \leq \operatorname{findclose}(B, i)$
- subtree_size $(i)=($ findclose $(i)-i+1) / 2$
- $\operatorname{depth}(i)=\operatorname{rank}_{( }(B, i)-\operatorname{rank}_{)}(B, i)$

Note also excess $(i)=\operatorname{rank}_{( }(B, i)-\operatorname{rank}_{)}(B, i)$ for all positions $i$ (not only for positions of opening parantheses, where $\operatorname{excess}(i)=\operatorname{depth}(i))$.
In order to jump directly to the opening parenthesis of the $i$ 'th node, we define the operation select as follows:

Definition 2. $\operatorname{select}_{( }(B, i)=$ position of $i$ 'th '(' in $B$

### 1.2 Rank and Select

We start with rank and select, as they will also be used as subroutines for findclose and enclose. Recall that we represent the BPS as a bit-vector, hence we can formulate the following task:
given: a bit-vector $B$ of length $n$
compute: a data structure that supports $\operatorname{rank}_{1}(B, i)$ and $\operatorname{select}_{1}(B, i)$ for all $i \leq j \leq n$. The size of the data structure should be asymptotically smaller than the size of $B$.
For rank, we divide $B$ into blocks of length $s=\frac{\lg n}{2}$ and superblocks of length $s^{\prime}=s^{2}$.
In a table $S B l k \operatorname{Rank}\left[0, n / s^{\prime}\right]$, we store the answers to rank for super-blocks, and in BlkRank[0,n/s] the same for blocks, but only relative to the beginning of the super-block:

$$
\begin{aligned}
& S B l k R a n k[i]=\operatorname{rank}_{1}\left(B, i \cdot s^{\prime}-1\right) \\
& \operatorname{BlkRank}[i]=\operatorname{rank}_{1}(B, i \cdot s-1)-\operatorname{rank}_{1}\left(B,\left\lfloor\frac{i}{s}\right\rfloor s^{\prime}-1\right)
\end{aligned}
$$

## Example 5.



We also store a lookup table Inblock $\left[0,2^{s}-1\right][0, s-1]$ where inblock $[$ pattern $][i]=\operatorname{rank}_{1}($ pattern,$i)$ for all bit patterns of length $s$ and all $0 \leq i \leq s$. Then
$\operatorname{rank}_{1}(B, i)=\operatorname{SBlkRank}\left[\left\lfloor\frac{i}{s^{\prime}}\right\rfloor\right]+\operatorname{BlkRank}\left[\left\lfloor\frac{i}{s}\right\rfloor\right]+\operatorname{Inblock}[B[\underbrace{\left\lfloor\frac{i}{s}\right\rfloor s}_{\text {start of } i \text { 's block }}, \underbrace{\left.\left.\frac{i+1}{s}\right\rceil s-1\right]}_{\text {end of } i \text { 's block }}]\left[i-\left\lfloor\frac{i}{s}\right\rfloor s\right]$
The sizes of the data structures are order of

$$
\begin{aligned}
& |S B l k R a n k|=\underbrace{\frac{n}{s^{\prime}}}_{\text {\#superblocks }} \times \underbrace{\lg n}_{\text {\#bits for value }}=\frac{n}{\lg n}, \\
& \mid \text { BlkRank } \left\lvert\,=\frac{n}{s} \times \lg s^{\prime}=\frac{n \lg \lg n}{\lg n}\right. \text {, and } \\
& \mid \text { Inblock } \mid=2^{s} \times s \times \lg s=\sqrt{n} \lg n \lg \lg n,
\end{aligned}
$$

all $o(n)$ bits.

### 1.3 Recommended Reading

- R.F.Geary, N.Rahman, R. Raman, V.Raman: A Simple Optimal Representation for Balanced Parantheses. Theor. Comp. Sci. 368(3): 231-246, 2006.
- J. I. Munro, V. Raman: Succinct Representation of Balanced Parenthesis and Static Trees. SIAM J. Comput 31(3): 762-776, 2001.

There is a vast amount of literature on succinct tree representations, focusing on enhancing the set of supported operations( i-th_child, lca, level-ancestor, ... ), dynamization(insert/delete nodes), lowering the redundancy(the $o(n)$-term), etc. A good pointer to recent developments is:

- K. Sadakane, G. Navarro: Fully-Functional Succinct Trees. Proc. SODA: 134-149, 2010.

