
Fortgeschrittene Datenstrukturen — Vorlesung 11

Schriftführer: Martin Weidner

19.01.2012

1 Succinct Data Structures (ctd.)

1.1 Select-Queries

A slightly different approach, compared to rank, is used for select. B represents the bit-vector with
|B| = n and let k = blog2 nc. A new table N is defined, which stores the (k · i)’th occurence of a
1-bit in B. Alternatively, N [i] = select1(B, ik). As we can see, table N [1, nk] divides B into blocks
of different sizes, whereas each block contains k 1’s. An example is given in Figure 1, where an
abstract bit-vector B is divided into blocks with k 1’s in each.

Example 1. Let N = [17, 28, 36, 53, ...] and k = 8. In this case, the 8th 1 would be at index 17 in
B, the 16th 1 at index 28 and so on.

B =

N[1] N[2] N[3] N[4] ...

...

Figure 1: Division of B into blocks with k 1’s

The resulting blocks are grouped as follows:

Definition 1. A long block spans more than k2 = Θ(log4 n) positions in B.

Its number is limited by n
log4 n

. Therefore, the answers for select-queries within all long blocks can

be stored explicitly in a table: LongBlock[0, n
log4 n

][1, k], where LongBlock[i][j] = select1(B, ik+ j).

Moreover, the LongBlock table is indexed by potential block numbers, because we do not know
how many long blocks there are before a given position. Therefore, we imagine that a long block
begins at every k2 position. Select-queries to long blocks can be responded completely based on
this structure.

Definition 2. A short block spans ≤ k2 positions in B.

It contains k 1-bits and it spans ≤ k2 positions in B at most. We divide their range of arguments
into sub-ranges of: k′ = blog2 kc = Θ(log2 log n). Then, a table N ′[1, nk′] is defined, whereas the
answers to select-queries for multiples of k′ (relative to the end of the previous block) are stored.

1

In table N ′, a ⊥ symbol indicates if we are in a long block. The formal definition of N ′ is:
N ′[i] = select1(B, ik

′)− (N [ik
′

k]), with ik′

k as the block before ith 1 and the subtrahend, representing
the end of the block.
Table N ′ divides the blocks into miniblocks, each containing k′ 1-bits. A miniblock is called long

if it spans more than s =
√
k
2 = logn

2 positions in B, and short otherwise. Analogous to the long
blocks, the answers to all select-queries are stored explicitly for all long miniblocks, relative to the
beginning of the corresponding short block. The table LongMiniBlock[0, ns][1, k′] is indexed by the
potential long miniblock numbers, because the number of long miniblocks up to a given position is
unknown.
Finally, a lookup table is stored for the short miniblocks because of its relative small size.

Definition 3 (Lookup table for small miniblocks). The lookup table for short miniblocks is defined
as follows: Inblock[0, 2s−1][1, k′], where: Inblock[pattern][i] = select1(pattern, i) for all bit-patterns
of length s and ∀1 ≤ i ≤ k′.

Based on this table, a select-query within a short miniblock B[b, i] can be answered by looking at
Inblock[B[b, b + s − 1]][i]. We should keep in mind that short miniblock could be shorter than s.
In this case, a padding with arbitrary bits in the end to match exactly s bits does not affect the
select query answer.

The query procedure follows the description of the data structure. Note that we can determine if
(mini-) blocks are long or short by inspecting adjacent elements of N (or N ′) and checking if they

differ by more than k2 (or
√
k
2).

In the following, it is verified that the required bit space of the defined structures for the select
query are succinct.

Table N The N table can have n
k entries as maximum in the case that B only contains 1’s.

Moreover, one stored index requires ≤ log n bits. We get: |N | = n
k log n = O(n

log2 n
· log n) =

O(n
logn) = o(n)

Table LongBlock LongBlock consists of n
k2

entries, because of one entry for each potential long
block. Moreover, it has k columns in order to store the positions of the k 1’s, which are inside
the block. A table cell requires log n bits. To sum up, the bit space results in: |LongBlock | =
n
k2
· k · log n = O(n

logn) = o(n)

Table N ′ The analysis is similar to N by just using the definition for k’: |N ′| = n
k′ · log k2 =

4n log logn
log2 logn

= O(n
log logn) = o(n)

LongMiniBlock The table consists of n
s potential miniblock entries and for each, with indices

for k′ 1’s, relative to the ending of the previous block. Thus, we get: |LongMiniBlock | =
n
s · k′ · log k2 = n√

k
· log2 k · log k2 = O(n log3 logn

logn) = o(n)

Inblock Inblock as a lookup table contains 2s different patterns, including k′ indices for the position
of the ith 1 (0 < i < k′): | Inblock | = 2s · k′ · log s = O(

√
n · log3 log n) = o(n)

As can be seen from the analysis, all defined structures require a bit space in o(n) and thus, they
are succinct.

2

Example 2. An example for the select structures is given in Figure 2. In the upper part, the bit
vector B is shown, including the borders for the different block types and indices. The three red-
dashed separators indicate the potential borders of long blocks. Moreover, there is presented a long
miniblock in darker blue and three short miniblocks following. Below, one can see the parameters
k, k′ etc. and the tables LongBlock, LongMiniBlock and Inblock, which are associated by means
of corresponding colors with the blocks in the bit-vector.

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 0! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 2! ! ! ! ! 3!
! ! ! ! ! ! ! ! ! ! 1! ! ! ! ! ! ! ! ! ! 2! ! ! ! ! ! ! ! ! ! 3! ! ! ! ! ! ! ! ! ! 4! ! ! ! ! ! ! ! ! ! 5! ! !
0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 0! 1! 2!
0! 0! 1! 1! 0! 0! 1! 0! 1! 1! 0! 1! 0! 0! 0! 0! 1! 1! 1! 0! 1! 1! 0! 0! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 0! 1! 1! 1! 1! 0! 0! 1! 0! 0! 0! 1! 0! 1! 0! 0!
0! ! ! ! ! ! 1! ! ! ! ! ! 2! ! ! ! ! ! 3! ! ! ! ! ! 4! ! ! ! ! ! 5! ! ! ! ! ! 6! ! ! ! ! ! 7! ! ! ! ! ! 8! ! ! ! !
! !
!

long block short block short block

Potential)block)number) 1" 2" 3" 4" 5" 6" 7" 8"
0) 2" 3" 6" 8" 9" 11" 16" 17"
1) +"
2) 38" 39" 40" 41" 44" 48" 50" 53"
3) +"

"

(LongBlock)
pattern' 1' 2' 3' 4'
000000" ⊥" ⊥" ⊥" ⊥"
…" " " " "
001111" 2" 3" 4" 5"
010000" 1" ⊥" ⊥" ⊥"
…" " " " "
010111" 1" 3" 4" 5"
…" " " " "
111101" 0" 1" 2" 3"
111110" 0" 1" 2" 3"
111111" ⊥" ⊥" ⊥" ⊥"
"

(Inblock)
! 1! 2! 3! 4!
0" #"
1" #"
2" #"
3" 0" 2" 3" 6"
4" #"
5" #"
6" #"
7" #"
8" #"
"

(LongMiniBlock) k"="8,"k2"="16"
k’"="4," !! "="6"
N""="17,"28,"36,"53"
N’"="⊥,⊥|7,11|4,8|⊥,⊥"

Figure 2: Example of select

1.2 Findclose

Again, let B be a balanced string of 2n parentheses.

Problem 1. We have to define a succinct data structure that requires o(n) bits of additional space
to answer findclose queries in O(1) time for any balanced string of length 2N ≤ 2n1.

Example 3. The following table presents a balanced parentheses string. An example query for
findclose would be: findclose(1) = 6.

1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

B = ((() ()) () ((() () ()) ()))

If N = O(n
log2 n

), we can precompute the answers for all 2N parentheses, using O(n
logn) = o(n) bits

in total. Otherwise, we construct the structures as follows: we divide B into equal-sized blocks of
length s, where: s = b logn2 c.

Definition 4. Let b(p) = bpsc denote the block in which parenthesis p lies. Moreover, we let µ(p)

denote the matching parenthesis of p: µ(p) =

{
findclose(p) B[p] = ’(’
findopen(p) else

1A new variable N is introduced, because the findclose operation is applied on the bit-vectors B′ and B′′ as well
(defined later) and their length is ≤ n.

3

Definition 5. Let’s call p far, if b(µ(p)) 6= b(p) (the matching parenthesis for p is located in another
block) or near, if b(µ(p)) = b(p).

Near Parentheses:
A lookup table NearFindClose[0, 2s − 1][0, s− 1] is precomputed such that:

NearFindClose[pattern][i] =

{
findclose(pattern, i) if pattern[i] is near
⊥ if pattern[i] is far

∀patterns,∀i : 1 ≤ i ≤ s such that pattern[i] = ′(′.

Far Parentheses:

Definition 6. Consider p as an opening far parenthesis and let q be the immediate predecessor of
p which is also an opening far parenthesis. An opening parenthesis p is called an opening pioneer
if: b(µ(p)) 6= b(µ(q)). A closing pioneer is defined symmetrically. A pioneer is either opening or
closing. Note that the match of a pioneer is not necessarily a pioneer itself. The root is always a
pioneer.

Example 4. Figure 3 shows an example of a pioneer p with s = 5.

) (() (() …) () ()) ((…
µ(p) µ(q)pq

z}|{ z}|{
s s

pioneer

Figure 3: Example of a pioneer

The number of pioneers is size of: #pioneer = |B′| = O(N
logn), because there can be at most one

pair (p, µ(p)) per pair of blocks such that p is in the one block and µ(p) in the other one, and p or
µ(p) is a pioneer: Imagine a graph, where nodes are represented by blocks and edges represent a
pioneer and its match. We can see that the resulting graph is planar, because matching parentheses
cannot cross. Hence, its size is linear in the number of blocks, which is O(N

logn).

We construct a data structure B′, which represents a substring of B, but only consisting of pioneers
and their matches. To tell whether a parenthesis p is stored in B′, the pioneers and their matches
are marked in a bitmap piofam[0, 2N − 1] and prepared for O(1) rank- and select-queries. To keep
the space within o(n), we need the following theorem, which will be proved in a further section.

Theorem 1. Sparse Bitmap Theorem
A bitmap B of length N containing u ≤ N 1’s can be represented in O(u log N

u) + o(N) bits of
space, such that subsequent rank- and select-queries on B can be answered in O(1) time.

The same structure is stored recursively for B′ such that |B′′| = O(N
log2 n

) with its corresponding

bitmap piofam’. In this stage, all answers can be precomputed.
Additionally, we need two more lookup tables for the final algorithm.

4

Definition 7. ∆Excess[0, 2s − 1][0, s − 1][0, s − 1] represents a lookup table to find differences in
excess level, defined as follows.

∆Excess[pattern][i][j] = excess(pattern, j)− excess(pattern, i)

Definition 8. Leftmost ∆[pattern][∆][i] = min {j ≤ i : excess(j)− excess(i) = ∆} with 0 ≤ i < s

By now, all relevant data structures for the findclose operation are defined. A bit space analysis
will verify that the structures are succinct.

Vector B′ We have already shown that there exist #pioneers = |B′| = O(N
logn), which can be

stored in o(n) bits.

Bitmap piofam Based on the sparse bitmap theorem and for u = O(N
logn), piofam requires a bit

space of: |piofam | = O(N
logn · log log n) + o(N) = o(n).

Vector B′′ B′′, which contains all pioneer families of B′, requires a bit space of: |B′′| = O(N
log2 n

) =

o(n).

Bitmap piofam’ For the corresponding pioneer bitmap for B′′, we set u = O(N
log2 n

), which results

in: |piofam’ | = O(N
log2 n

· log(log n · log2 nN)) + o(N) = O(N
log2 n

· log logn) + o(N) = o(n).

Table NearFindClose The lookup table contains an entry for each of the 2s patterns, one entry
stores O(s) indices for near parentheses and each index requires log s bits. Therefore, a bit
space of O(2s · s · log s) = o(n) is required.

∆Excess and Leftmost∆ Similar to NearFindClose, both tables have entries for 2s patterns,
O(s2) rows and a cell with log s bits. If the three tables are combined, they require: O(2s ·
s2 · log s) = o(n). Because both tables and NearFindClose use the same patterns, it is even
possible to precompute a combined lookup table.

As has been shown for all data structures, each requires a bit space in o(n) and thus, they are
still succinct. In the following, we continue with the definition of the algorithm for the operation
findclose(p).

Definition 9. Operation findclose(p)

1. Based on the lookup table, determine whether p is far:

(a) p is near → The table NearFindClose gives the answer.

(b) p is far, then calculate the number of members in the pioneer family B′ up to p by q ←
rank1(piofam, p) and the position of this parenthesis in B′ by p∗ ← select1(piofam, q),
which is an opening parenthesis and the immediate previous pioneer. Using the recursive
structure for B′, we find that j ← findclose(B′, q − 1)2 is the match of q in B′, which
can be mapped back to a position in B by µ(p∗) = select1(piofam, j + 1).

2. Since the first far parenthesis in each block is stored in B′, b(p) = b(p∗). Via a table lookup,
the excess level difference ∆ between p∗ and p is determined. Let b = bpsc and set ∆ ←
∆Excess[B[bs, (b+ 1)s− 1]][p− bs][p∗ − bs].

2q − 1 because rank starts at 1.

5

3. The change between µ(p) and µ(p∗) must be ∆ and µ(p) is the leftmost position in µ(p∗)’s
block with this property (same excess difference). Thus, we can use the Leftmost∆ lookup

table, where b′ = bµ(p∗)s c is µ(p∗)’s block (hence, also µ(p)’s block) by

µ(p) = b′ · s+ Leftmost ∆[B[b′ · s, (b′ + 1)s− 1]][∆][µ(p∗)− b′ · s]

Example 5. Finally, an example of findclose is presented. The required data structures are visible
in Figure 4. Separators are indicating block borders for s = 5. Our example query is: findclose(4).
As we can see from a lookup in NearFindClose, the ⊥ for our p indicates a far parenthesis pair.
Next, the algorithm computes the rank1 in piofam up to p, which results in q = 2. Based on q, the
immediate previous pioneer p∗ is calculated. Moreover, the closing parenthesis for p∗ is at j = 2
and µ(p∗) = 6 can be determined. The excess difference between p∗ and p is: ∆ = 1 (∆Excess, last
pattern, i = 1 for index 4 in pattern). At the end, the ∆Leftmost table is accessed for ∆ = 1. In the
pattern, µ(p∗) is at index 1 and the table returns a 0. We can finally calculate µ(p) = b65c·5+0 = 5.

((() ()) () ((() () ()) ()))
excess {

B =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1piofam =

(() (()))B0 =

1 0 0 0 0 0 0 0 1
B00 =

piofam0 =

()

p⇤ µ(p⇤)

j

p

Figure 4: Example data structures of findclose

! ! NearFindClose! ΔExcess! LeftmostΔ !
! ! ! ! ! ! ! i!=!0! i!=!1! i!=!2! ! Δ!=!1! Δ!=!2! !
! pattern! 0! 1! 2! 3! 4! 1! 2! 3! 4! 2! 3! 4! 3! 4! 4! 1! 2! 3! 4! 1! 2! 3! 4! etc.!
!)!)!)!)!)! ! ! ! ! ! 21! 22! 23! 24! 21! 22! 23! 21! 22! 21! 0! 1! 2! 3! ! 0! 1! 2! !
!)!)!)!)!(! ! ! ! ! ⊥! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

…! ! ! ! ! ! ! ! ! !
block!1!⇒!)!)!(!)!(! ! ! 3! ! ⊥! ! ! ! ! ! ! ! ! ! ! 0! 0! ! ! ! ! ! ! !

…! ! ! ! ! ! ! ! ! !
!)!(!)!(!(! ! 2! ! ⊥! ⊥! 1! 0! 1! 2! 21! 0! 1! 1! 2! 1! ! ! ! ! ! ! ! ! !

…! ! ! ! ! ! ! ! ! !
block!0!⇒! (!(!(!)!(! ⊥! ⊥! 3! ! ⊥! 1! 2! 1! 2! 1! 0! 1! 21! 0! 1! ! ! 2! ! ! ! ! ! !

…! ! ! ! ! ! ! ! ! !
!

Figure 5: Example lookup table of findclose

6

References

R.F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for balanced parentheses. In
Combinatorial Pattern Matching, pages 159–172. Springer, 2004.

J.I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees. SIAM Journal on
Computing, 31(3):762–776, 2001.

7

	Succinct Data Structures (ctd.)
	Select-Queries
	Findclose

