
Fortgeschrittene Datenstrukturen — Vorlesung 12

Schriftführer: Johannes Bittner

26.1.2012

1 Sparse Bitmaps

Our final task is to prove the sparse bitmap theorem: represent a bit-vector B[0, n− 1] containing
u 1’s in O(u ∗ lg(n/u)) + o(n) bits such that rank, select and access to any B[i] can be answered
in O(1) time. Note that the space is o(n) if u = o(n). Our strategy is to compress B such that
arbitrary C = O(lg n) consecutive bits B[i . . . i + C − 1] can be accessed in O(1) time. Then we
can re-use the rank and select data structures from the previous section: whenever they need to
make a table lookup on a block of size lgn

2 , we load those bits in O(1) time. Accessing B[i] works
similar: extract the bit from its corresponding lg n-sized chunk using bit-operations on words.

Again, we divide B into blocks of size s = lgn
2 . Each block Bi will be represented individually

by two values, where i is the block index:

1. ui: the number of 1’s in the block.

2. oi: an index in an enumeration of all
(
s
ui

)
bit-vectors of length s containing ui 1’s.

To recover the original block contents from a (ui, oi)-pair, we store a universal lookup table
BlkContents, where BlkContents[ui][oi] contains the original s bits of a block that is encoded by
(ui, oi). We now show how to store and recover the (ui, oi)-pair efficiently.

The ui’s are stored in an array U [0, ns] containing numbers of size lg s bits, and the oi’s are
stored in a bit stream O of variable-length numbers. In order to recover the oi-values from O, we
use again a 2-level storage scheme: group s consecutive blocks into superblocks of size s′ = s2 and
store in SBlk[iSBlk] the beginning of oi’s in O, where 0 ≤ iSBlk ≤ d ns′ e−1. In a second table Blk[i],
we store the beginning of the description of oi in O, but this time only relative to the beginning of
the corresponding superblock. Those two tables allow to recover the oi’s for any block iBlk.

1

1.1 Space analysis

|U | = n

s
∗ lg s = O(

n ∗ lg lgn

lg n
)

|SBlk| = n

s′
∗ lg n = O(

n

lg n
)

|Blk| = n

s
∗ lg s′ = O(

n ∗ lg lgn

lg n
)

|BlkContents| =
s∑

u=0

(
s

u

)
∗ s

≤ s ∗ 2s ∗ s = O(
√
n lg2 n)

|O| =
n/s∑
i=0

dlg
(
s

ui

)
e

≤
∑

lg

(
s

ui

)
+
n

s

≤ lg

(
n

u

)
+
n

s
(since

(
n

u

)
≤
(
s

u1

)
∗ · · · ∗

(
s

un/s

)
)

= lg
n!

u! ∗ (n− u)!
+
n

s

= lg

u factors︷ ︸︸ ︷
n ∗ (n− 1) ∗ · · · ∗ (n− u+ 1) ∗(n− u) ∗ · · · ∗ 1

u! ∗ (n− u) ∗ · · · ∗ 1
+
n

s

≤ lg
nu

u!
+
n

s

≤ lg
nu ∗ eu

uu
+
n

s
(Stirling’s approximation)

= O(u lg
n

u
) +O(

n

lg n
)

1.2 Example of bit vector compression

With the data structures below, accessing a bit in B, for example B[18], could be achieved as
follows:

• Determine block i = 18
s = 4 and superblock iSBlk = 18

s′ = 1.

• We now want to recover o4. The value in SBlk is an index into the array O, so we then read
O[SBlk[iSblk]] = 10. Furthermore, we need Blk[i] = 0. The index into O for retrieving o4 is
thus 10 + 0 = 10, as Blk[i] is relative to the beginning of the superblock. Therefore, o4 = 10.

• Together with u4 = 1, which can be retrieved from array U , we read BlkContents[1][10] =
0010.

2

0 4 8 12 16 20 24 28 32 36 40 44

0110 0010 0011 0010 0010 1000 0110 0000 1000 1010 1100 1000
}
B

Figure 1: Bitmap B, with s = 4 and s′ = 16.

2 1 2 1 1 1 2 0 1 2 2 1
}
U

Figure 2: Array U , containing the number of 1’s for each block in B.

010 10 101 10 10 00 010 0 00 001 000 00
}
O

Figure 3: Array O, containing the oi’s.

0 10 18
}
SBlk

Figure 4: Array SBlk, the values are indices into the O array.

0 3 5 8 0 2 4 7 0 2 5 8
}
Blk

Figure 5: Array Blk, the values are arrays into the O array again, but this time relative to the
superblock.

(a) BlkContents[2]

oi block

0 0 0 1 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 1 0 1
1 0 1 0 0 1 1

(b) BlkContents[1]

oi block

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

(c) BlkContents[0]

oi block

0 0 0 0 0

Table 1: BlkContents[ui][oi]

3

2 Distance Oracles in Graphs

In this chapter we show how to preprocess a graph G = (V,E) with |V | = n nodes and |E| = m
vertices such that subsequent approximate distance-queries in G can be answered efficiently.

2.1 Basic Definitions

Let G = (V,E) be a weighted undirected graph with nonnegative edge weights ω(e) for e ∈ E.
The distance δ(u, v) between two arbitrary nodes is the weighted path-length of the shortest path
between u and v, in symbols:

δ(u, v) = min

{∑
e∈Π

ω(e) : Π is u-to-v path

}

Let δ̂ be an estimate to δ(u, v). We say that δ̂(u, v) is of stretch t iff

δ(u, v) ≤ δ̂(u, v) ≤ t ∗ δ(u, v)

The aim of this chapter is to show the following theorem:

Theorem 1. For any parameter k ≥ 1, a graph G can be preprocessed in expected
O(kn1/k(n lg n + m)) time, producing a data structure of O(kn1+1/k) size, such that subsequent
approximate distance queries can be answered in O(k) time, with stretch t ≤ 2k − 1.

Note that the theorem only considers pure distance queries. However, it is also possible to
return a corresponding path in constant time per edge.

2.2 Approximate Distance Oracles for Metric Spaces

Let us first assume that we are given an (n× n) distance matrix representing a finite metric δ on
V . For example, we can assume that δ is the shortest path metric induced by the graph G. An
example of a graph is shown in Figure 6, with its corresponding distance matrix in Table 2.

A B C D E F G H

A 0 1 2 3 4 3 8 6
B 0 2 3 5 3 8 6
C 0 1 3 1 6 4
D 0 4 2 5 3
E 0 2 4 6
F 0 6 4
G 0 2
H 0

Table 2: Example of distance matrix, representing δ of G.

4

A

B

C

D

F

E
G

H

1 2

2

4

2

1

1 3

2

4

4

Figure 6: Example for graph G.

2.2.1 Preprocessing

The preprocessing algorithm starts by constructing a non-decreasing sequence of sets

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 ⊇ Ak = ∅

in a randomized manner. The rule is that each element of Ai−1 is placed in Ai independently,
with probability n−1/k. We assume that Ak−1 6= ∅ (otherwise the construction has to be restarted).
The expected size Exp[|Ai|] of Ai, for 0 ≤ i ≤ k, is

Exp[|Ai|] = |V | ∗ Prob[v ∈ Aj ∀ 1 ≤ j ≤ i]
= n ∗ n−1/k ∗ n−1/k ∗ · · · ∗ n−1/k︸ ︷︷ ︸

i times

= n1−i/k

For each vertex v ∈ V and every index i = 0, . . . , k − 1, we compute and store δ(Ai, v), the
smallest distance from v to a vertex in Ai. The algorithm also computes and stores an element
pi(v), the witness, that is nearest to Ai. That is, δ(pi(v), v) = δ(Ai, v). We define δ(Ak, v) =∞ for
all v ∈ V and leave pk(v) undefined.

Example 1. Let A1 = {B,E, F,G}, A2 = {E,F}, A3 = {E} and A4 = ∅. Then δ(Ai, v) and pi(v)
have the values as shown in Table 3.

The size of this table is O(k ∗ n).

2.2.2 Bunches

For each vertex v ∈ V , the algorithm also computes a bunch B(v) ⊆ V as follows. Informally, a
vertex w is put into the bunch of v if w is in Ai, but not in Ai+1, and it is closer to v than v is to
Ai+1. In symbols,

5

δ(Ai, v) pi(v)
v i = 0 1 2 3 4 i = 0 1 2 3 4

A 0 1 3 4 ∞ A B F E ⊥
B 0 0 3 5 ∞ B B F E ⊥
C 0 1 1 3 ∞ C F F E ⊥
D 0 2 2 4 ∞ D F F E ⊥
E 0 0 0 0 ∞ E E E E ⊥
F 0 0 0 2 ∞ F F F E ⊥
G 0 0 4 4 ∞ G G E E ⊥
H 0 2 4 6 ∞ H G F E ⊥

Table 3: δ(Ai, v) and pi(v) of graph shown in Figure 6.

w ∈ B(v)⇔ ∃i : w ∈ Ai\Ai+1 and δ(w, v) < δ(Ai+1, v)

A schematic view of bunches, assuming Euclidian distances, is shown in Figure 7. The arrows
point to the elements which belong to B(v). Note that since δ(Ak, v) =∞, we get that Ak−1 ⊆ B(v)
for every v ∈ V . This is shown in Figure 7, where all elements of A2 are included in B(v).

∈ A0

∈ A1

∈ A2

Figure 7: Schematic view of bunches

Example 2. B(A) is the bunch of A, using the values of Table 3.

B(A) =

 A︸︷︷︸
0=δ(A,A)<δ(A1,A)=1

, B︸︷︷︸
1=δ(A,B)<δ(A2,A)=3

, F︸︷︷︸
3=δ(A,F)<δ(A3,A)=4

, E︸︷︷︸
4=δ(A,E)<δ(A4,A)=∞

The bunch B(v) is stored in a perfect hash table of size O(|B(v)|), such that for an arbitrary

w ∈ V it is possible in O(1) time to tell if w ∈ B(v). If w ∈ B(v), we also store the distance δ(v, w).
We now bound the expected sizes of the bunches.

Lemma 2. The expected size of B(v) is k ∗ n1/k.

6

Proof. We show that in any iteration of the preprocessing algorithm, the bunch grows only by n1/k

elements in expectation, in symbols:

Exp[|B(v) ∩ (Ai\Ai+1)|] = n1/k ∀ 0 ≤ i ≤ k − 1

For i = k − 1 the claim is trivial, as all elements from Ak−1 are in the bunch and

Exp[|Ak−1|] = n1− k−1
k = n1/k. For i < k − 1, let w1, . . . , wx be the elements of Ai arranged

in nondecreasing order of distance from v. Figure 8 shows a schematic view of those nodes, again
assuming Euclidian distances.

∈ Ai−1

∈ Ai
∈ Ai+1

pi(v) = w1

pi+1(v) = w5

v

w2

w3

w4

w6

w7

Figure 8: Sketch showing w1, . . . , wx

If wj ∈ B(v), then δ(wj , v) < δ(Ai+1, v), and thus w1, . . . , wj 6∈ Ai+1. So Prob[wj ∈ B(v)] ≤
(1 − p)j for p being the probability that an element from Ai is placed into Ai+1, as all w1, . . . wj
must not be in Ai+1. So the expected size of B(v) ∩ (Ai\Ai+1) is at most

x∑
j=1

Prob[wj ∈ B(v)]

≤
x∑
j=1

(1− p)j

≤
∞∑
j=0

(1− p)j

< p−1 (geometric series)

= n1/k (by definition of Ai+1)

Using this lemma, the total size of all hash tables is
∑

v∈V |B(v)| = n1+1/k in expectation. As
usual by rerunning the algorithm until the data structure is small enough this is the space in the
worst case; the expected number of trials to achieve this space is constant by Markov’s inequality.
The overall running time is O(n2).

7

2.3 Answering Distance Queries

The idea of the query algorithm is to iterate through the preprocessed layers until the bunches
intersect, as illustrated in Figure 9. Note that δ(p3(u), v) is stored in the hash table of B(v), and
δ(u, p3(u)) is stored in the global table of Section 2.2.1.

p1(u)

u p3(u)

p2(v)

v

δ(u, p3(u)) δ(p3(u), v)

B(u)

B(v)

Figure 9: Sketch of the query algorithm

The complete algorithm is best shown by means of pseudo-code, which is shown in Algorithm
1. Note that the algorithm always terminates, as if i = k− 1, w ∈ Ak−1 and Ak−1 ⊆ B(v) for every
v ∈ V .

Algorithm 1: Computing distk(u, v)

w ← u;
i← 0;
while w 6∈ B(v) do

i← i+ i;
w ← pi(v);
(u, v)← (v, u);

end
return δ(w, u) + δ(w, v);

We finally show that the stretch produced by distk(u, v) is at most (2k − 1).

Lemma 3. distk(u, v) ≤ (2k − 1) ∗ δ(u, v)

Proof. Let ∆ = δ(u, v). We show that each iteration increases δ(w, u) by at most ∆. This proves
our claim, since in the beginning δ(w, u) = 0 and there are at most k− 1 iterations, we will end up
with δ(w, u) ≤ (k − 1) ∗∆. Now,

8

δ(w, v) ≤ δ(w, u) + δ(u, v) (triangle inequality)

≤ (k − 1) ∗∆ + ∆

= k ∗∆

so distk(u, v) = δ(u,w) + δ(w, v) ≤ (2k − 1) ∗∆.
Let ui, vi and wi be the values of the variables u, v, w assigned with a given value of i (u0 =

u, v0 = v and w0 = u), so δ(w0, u0) = 0. We want to show δ(wi, ui) ≤ δ(wi−1, ui−1) + ∆ if the i′th
iteration passes the test of the while loop. Then wi−1 6∈ B(vi−1), so

δ(wi−1, vi−1) ≥ δ(Ai, vi−1)

= δ(pi(vi−1), vi−1) = δ(wi, ui)

δ(w
i−1 , u

i−1)

∆

wi−1

ui−1

pi(vi−1) = wi

vi−1 = ui

So by using the triangle inequality, we get

δ(wi, ui) ≤ δ(wi−1, vi−1)

≤ δ(wi−1, ui−1) + δ(ui−1, vi−1)

= δ(wi−1, ui−1) + ∆

2.4 Example Distance Query

For the example distance query distk(H,A), we use the same graph and sets Ai as in the previous
subsections.

9

A

B

C

D

F

E
G

H

1 2

2

4

2

1

1 3

2

4

4

A0 = {A,B,C,D,E, F,G,H}
A1 = {B,E, F,G}
A2 = {E,F}
A3 = {E}
A4 = ∅

Given those definitions, the following bunches B(A) and B(H) result:

B(A) = {A,B, F,E}
B(H) = {H,G,F,E}

The following shows the query distk(H,A). Note that δ(F,A) is stored with the bunch of
δ(F,A), as F ∈ B(A), whereas δ(F,H) = δ(A2, H) is stored with p2(H). Also note that there
exists a shorter path from A→ C → D → H with δ(A,H) = 6.

distk(H,A)
i = 0 : w = H 6∈ B(A)

⇒ i← i+ 1
⇒ w ← p1(A) = B

i = 1 : w = B 6∈ B(H)
⇒ i← i+ 1
⇒ w ← p2(H) = F

i = 2 : w = F ∈ B(A)

10

⇒ return δ(F,H)︸ ︷︷ ︸
4

+ δ(F,A)︸ ︷︷ ︸
3

References

[1] Thorup and Zwick. Approximate distance oracles. JACM: Journal of the ACM, 52, 2005.

11

