Fortgeschrittene Datenstrukturen - Vorlesung 12

Schriftführer: Johannes Bittner

26.1.2012

1 Sparse Bitmaps

Our final task is to prove the sparse bitmap theorem: represent a bit-vector $B[0, n-1]$ containing u 1's in $O(u * \lg (n / u))+o(n)$ bits such that rank, select and access to any $B[i]$ can be answered in $O(1)$ time. Note that the space is $o(n)$ if $u=o(n)$. Our strategy is to compress B such that arbitrary $C=O(\lg n)$ consecutive bits $B[i \ldots i+C-1]$ can be accessed in $O(1)$ time. Then we can re-use the rank and select data structures from the previous section: whenever they need to make a table lookup on a block of size $\frac{\lg n}{2}$, we load those bits in $O(1)$ time. Accessing $B[i]$ works similar: extract the bit from its corresponding $\lg n$-sized chunk using bit-operations on words.

Again, we divide B into blocks of size $s=\frac{\lg n}{2}$. Each block B_{i} will be represented individually by two values, where i is the block index:

1. u_{i} : the number of 1 's in the block.
2. o_{i} : an index in an enumeration of all $\binom{s}{u_{i}}$ bit-vectors of length s containing $u_{i} 1$'s.

To recover the original block contents from a $\left(u_{i}, o_{i}\right)$-pair, we store a universal lookup table BlkContents, where BlkContents $\left[u_{i}\right]\left[o_{i}\right]$ contains the original s bits of a block that is encoded by $\left(u_{i}, o_{i}\right)$. We now show how to store and recover the (u_{i}, o_{i})-pair efficiently.

The u_{i} 's are stored in an array $U\left[0, \frac{n}{s}\right]$ containing numbers of size $\lg s$ bits, and the o_{i} 's are stored in a bit stream O of variable-length numbers. In order to recover the o_{i}-values from O, we use again a 2-level storage scheme: group s consecutive blocks into superblocks of size $s^{\prime}=s^{2}$ and store in $S B l k\left[i_{S B l k}\right]$ the beginning of o_{i} 's in O, where $0 \leq i_{S B l k} \leq\left\lceil\frac{n}{s^{\prime}}\right\rceil-1$. In a second table $B l k[i]$, we store the beginning of the description of o_{i} in O, but this time only relative to the beginning of the corresponding superblock. Those two tables allow to recover the o_{i} 's for any block $i_{B l k}$.

1.1 Space analysis

$$
\begin{aligned}
|U| & =\frac{n}{s} * \lg s=O\left(\frac{n * \lg \lg n}{\lg n}\right) \\
|S B l k| & =\frac{n}{s^{\prime}} * \lg n=O\left(\frac{n}{\lg n}\right) \\
|B l k| & =\frac{n}{s} * \lg s^{\prime}=O\left(\frac{n * \lg \lg n}{\lg n}\right) \\
|B l k C o n t e n t s| & =\sum_{u=0}^{s}\binom{s}{u} * s \\
& \leq s * 2^{s} * s=O\left(\sqrt{n} \lg ^{2} n\right) \\
|O| & =\sum_{i=0}^{n / s}\left\lceil\lg \binom{s}{u_{i}}\right\rceil \\
& \leq \sum^{\lg \binom{s}{u_{i}}+\frac{n}{s}} \\
& \leq \lg \binom{n}{u}+\frac{n}{s} \\
& =\lg \frac{n!}{u!*(n-u)!} \frac{\overbrace{}^{n} *(n-1) * \cdots *(n-u+1) *(n-u) * \cdots * 1}{s}+\frac{n}{s} \\
& \leq \lg \frac{n^{u}}{u!}+\frac{n}{s} \\
& \leq \lg \frac{n^{u} * e^{u}}{u^{u}}+\frac{n}{s} \\
& =O\left(u \lg \frac{n}{u}\right)+O\left(\frac{n}{\lg n}\right)
\end{aligned}
$$

1.2 Example of bit vector compression

With the data structures below, accessing a bit in B, for example $B[18]$, could be achieved as follows:

- Determine block $i=\frac{18}{s}=4$ and superblock $i_{S B l k}=\frac{18}{s^{\prime}}=1$.
- We now want to recover o_{4}. The value in $S B l k$ is an index into the array O, so we then read $O\left[S B l k\left[i_{S b l k}\right]\right]=10$. Furthermore, we need $B l k[i]=0$. The index into O for retrieving o_{4} is thus $10+0=10$, as $B l k[i]$ is relative to the beginning of the superblock. Therefore, $o_{4}=10$.
- Together with $u_{4}=1$, which can be retrieved from array U, we read BlkContents $[1][10]=$ 0010.

Figure 1: Bitmap B, with $s=4$ and $s^{\prime}=16$.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 2 & 1 & 2 & 1 & 1 & 1 & 2 & 0 & 1 & 2 & 2 & 1 \\ \hline\end{array}\right\} U$

Figure 2: Array U, containing the number of 1's for each block in B.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 010 & 10 & 101 & 10 & 10 & 00 & 010 & 0 & 00 & 001 & 000 & 00 \\ \hline\end{array}\right\} O$

Figure 3: Array O, containing the o_{i} 's.

0	10	18

Figure 4: Array $S B l k$, the values are indices into the O array.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 3 & 5 & 8 & 0 & 2 & 4 & 7 & 0 & 2 & 5 & 8 \\ \hline\end{array}\right\} B l k$

Figure 5: Array $B l k$, the values are arrays into the O array again, but this time relative to the superblock.

(a) BlkContents[2]							(b) BlkContents[1]						(c) BlkContents[0]				
	o_{i}			bloc				\bigcirc_{i}		bloc			o_{i}		loc		
0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0	1	0	1	0	0					
0	1	0	0	1	1	0	1	0	0	0	1	0					
0	1	1	1	0	0	1	1	1	0	0	0						
1	0	0	0	1	0	1											
1	0	1		0	1	1											

Table 1: BlkContents $\left[u_{i}\right]\left[o_{i}\right]$

2 Distance Oracles in Graphs

In this chapter we show how to preprocess a graph $G=(V, E)$ with $|V|=n$ nodes and $|E|=m$ vertices such that subsequent approximate distance-queries in G can be answered efficiently.

2.1 Basic Definitions

Let $G=(V, E)$ be a weighted undirected graph with nonnegative edge weights $\omega(e)$ for $e \in E$. The distance $\delta(u, v)$ between two arbitrary nodes is the weighted path-length of the shortest path between u and v, in symbols:

$$
\delta(u, v)=\min \left\{\sum_{e \in \Pi} \omega(e): \Pi \text { is } u \text {-to- } v \text { path }\right\}
$$

Let $\hat{\delta}$ be an estimate to $\delta(u, v)$. We say that $\hat{\delta}(u, v)$ is of stretch t iff

$$
\delta(u, v) \leq \hat{\delta}(u, v) \leq t * \delta(u, v)
$$

The aim of this chapter is to show the following theorem:
Theorem 1. For any parameter $k \geq 1, a \operatorname{graph} G$ can be preprocessed in expected $O\left(k n^{1 / k}(n \lg n+m)\right)$ time, producing a data structure of $O\left(k n^{1+1 / k}\right)$ size, such that subsequent approximate distance queries can be answered in $O(k)$ time, with stretch $t \leq 2 k-1$.

Note that the theorem only considers pure distance queries. However, it is also possible to return a corresponding path in constant time per edge.

2.2 Approximate Distance Oracles for Metric Spaces

Let us first assume that we are given an $(n \times n)$ distance matrix representing a finite metric δ on V. For example, we can assume that δ is the shortest path metric induced by the graph G. An example of a graph is shown in Figure 6, with its corresponding distance matrix in Table 2.

	A	B	C	D	E	F	G	H
A	0	1	2	3	4	3	8	6
B		0	2	3	5	3	8	6
C			0	1	3	1	6	4
D				0	4	2	5	3
E					0	2	4	6
F						0	6	4
G							0	2
H								0

Table 2: Example of distance matrix, representing δ of G.

Figure 6: Example for graph G.

2.2.1 Preprocessing

The preprocessing algorithm starts by constructing a non-decreasing sequence of sets

$$
V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k-1} \supseteq A_{k}=\emptyset
$$

in a randomized manner. The rule is that each element of A_{i-1} is placed in A_{i} independently, with probability $n^{-1 / k}$. We assume that $A_{k-1} \neq \emptyset$ (otherwise the construction has to be restarted). The expected size $\operatorname{Exp}\left[\left|A_{i}\right|\right]$ of A_{i}, for $0 \leq i \leq k$, is

$$
\begin{aligned}
\operatorname{Exp}\left[\left|A_{i}\right|\right] & =|V| \quad * \operatorname{Prob}\left[v \in A_{j} \forall 1 \leq j \leq i\right] \\
& =n \quad * \underbrace{n^{-1 / k} * n^{-1 / k} * \cdots * n^{-1 / k}}_{i \text { times }} \\
& =n^{1-i / k}
\end{aligned}
$$

For each vertex $v \in V$ and every index $i=0, \ldots, k-1$, we compute and store $\delta\left(A_{i}, v\right)$, the smallest distance from v to a vertex in A_{i}. The algorithm also computes and stores an element $p_{i}(v)$, the witness, that is nearest to A_{i}. That is, $\delta\left(p_{i}(v), v\right)=\delta\left(A_{i}, v\right)$. We define $\delta\left(A_{k}, v\right)=\infty$ for all $v \in V$ and leave $p_{k}(v)$ undefined.

Example 1. Let $A_{1}=\{B, E, F, G\}, A_{2}=\{E, F\}, A_{3}=\{E\}$ and $A_{4}=\emptyset$. Then $\delta\left(A_{i}, v\right)$ and $p_{i}(v)$ have the values as shown in Table 3.

The size of this table is $O(k * n)$.

2.2.2 Bunches

For each vertex $v \in V$, the algorithm also computes a bunch $B(v) \subseteq V$ as follows. Informally, a vertex w is put into the bunch of v if w is in A_{i}, but not in A_{i+1}, and it is closer to v than v is to A_{i+1}. In symbols,

V	$\delta\left(A_{i}, v\right)$						$p_{i}(v)$					
	$i=$	0	1	2	3	4	$i=$	0	1	2	3	4
A		0	1	3	4	∞		A	B	F	E	\perp
B		0	0	3	5	∞		B	B	F	E	\perp
C		0	1	1	3	∞		C	F	F	E	\perp
D		0	2	2	4	∞		D	F	F	E	\perp
E		0	0	0	0	∞		E	E	E	E	\perp
F		0	0	0	2	∞		F	F	F	E	\perp
G		0	0	4	4	∞		G	G	E	E	\perp
H		0	2	4	6	∞		H	G	F	E	\perp

Table 3: $\delta\left(A_{i}, v\right)$ and $p_{i}(v)$ of graph shown in Figure 6.

$$
w \in B(v) \Leftrightarrow \exists i: w \in A_{i} \backslash A_{i+1} \text { and } \delta(w, v)<\delta\left(A_{i+1}, v\right)
$$

A schematic view of bunches, assuming Euclidian distances, is shown in Figure 7. The arrows point to the elements which belong to $B(v)$. Note that since $\delta\left(A_{k}, v\right)=\infty$, we get that $A_{k-1} \subseteq B(v)$ for every $v \in V$. This is shown in Figure 7, where all elements of A_{2} are included in $B(v)$.

$$
\circ \in A_{0}
$$

$$
\bullet \in A_{1}
$$

$$
\cdot \in A_{2}
$$

Figure 7: Schematic view of bunches

Example 2. $B(A)$ is the bunch of A, using the values of Table 3.

$$
B(A)=\{\underbrace{A}, \underbrace{B}_{0=\delta(A, A)<\delta\left(A_{1}, A\right)=1}, \underbrace{F}_{1=\delta(A, B)<\delta\left(A_{2}, A\right)=3}, \underbrace{E}_{3=\delta(A, F)<\delta\left(A_{3}, A\right)=4},{ }_{4=\delta(A, E)<\delta\left(A_{4}, A\right)=\infty}^{E}\}
$$

The bunch $B(v)$ is stored in a perfect hash table of size $O(|B(v)|)$, such that for an arbitrary $w \in V$ it is possible in $O(1)$ time to tell if $w \in B(v)$. If $w \in B(v)$, we also store the distance $\delta(v, w)$.

We now bound the expected sizes of the bunches.
Lemma 2. The expected size of $B(v)$ is $k * n^{1 / k}$.

Proof. We show that in any iteration of the preprocessing algorithm, the bunch grows only by $n^{1 / k}$ elements in expectation, in symbols:

$$
\operatorname{Exp}\left[\left|B(v) \cap\left(A_{i} \backslash A_{i+1}\right)\right|\right]=n^{1 / k} \forall 0 \leq i \leq k-1
$$

For $i=k-1$ the claim is trivial, as all elements from A_{k-1} are in the bunch and $\operatorname{Exp}\left[\left|A_{k-1}\right|\right]=n^{1-\frac{k-1}{k}}=n^{1 / k}$. For $i<k-1$, let w_{1}, \ldots, w_{x} be the elements of A_{i} arranged in nondecreasing order of distance from v. Figure 8 shows a schematic view of those nodes, again assuming Euclidian distances.

Figure 8: Sketch showing w_{1}, \ldots, w_{x}
If $w_{j} \in B(v)$, then $\delta\left(w_{j}, v\right)<\delta\left(A_{i+1}, v\right)$, and thus $w_{1}, \ldots, w_{j} \notin A_{i+1}$. So $\operatorname{Prob}\left[w_{j} \in B(v)\right] \leq$ $(1-p)^{j}$ for p being the probability that an element from A_{i} is placed into A_{i+1}, as all $w_{1}, \ldots w_{j}$ must not be in A_{i+1}. So the expected size of $B(v) \cap\left(A_{i} \backslash A_{i+1}\right)$ is at most

$$
\begin{aligned}
& \sum_{j=1}^{x} \operatorname{Prob}\left[w_{j} \in B(v)\right] \\
& \leq \sum_{j=1}^{x}(1-p)^{j} \\
& \leq \sum_{j=0}^{\infty}(1-p)^{j} \\
&< p^{-1} \\
&= n^{1 / k} \\
& \text { (geometric series) } \\
& \text { (by definition of } A_{i+1} \text {) }
\end{aligned}
$$

Using this lemma, the total size of all hash tables is $\sum_{v \in V}|B(v)|=n^{1+1 / k}$ in expectation. As usual by rerunning the algorithm until the data structure is small enough this is the space in the worst case; the expected number of trials to achieve this space is constant by Markov's inequality. The overall running time is $O\left(n^{2}\right)$.

2.3 Answering Distance Queries

The idea of the query algorithm is to iterate through the preprocessed layers until the bunches intersect, as illustrated in Figure 9. Note that $\delta\left(p_{3}(u), v\right)$ is stored in the hash table of $B(v)$, and $\delta\left(u, p_{3}(u)\right)$ is stored in the global table of Section 2.2.1.

Figure 9: Sketch of the query algorithm
The complete algorithm is best shown by means of pseudo-code, which is shown in Algorithm 1. Note that the algorithm always terminates, as if $i=k-1, w \in A_{k-1}$ and $A_{k-1} \subseteq B(v)$ for every $v \in V$.

```
Algorithm 1: Computing \(\operatorname{dist}_{k}(u, v)\)
    \(w \leftarrow u ;\)
    \(i \leftarrow 0\);
    while \(w \notin B(v)\) do
        \(i \leftarrow i+i ;\)
        \(w \leftarrow p_{i}(v) ;\)
        \((u, v) \leftarrow(v, u) ;\)
    end
    return \(\delta(w, u)+\delta(w, v)\);
```

We finally show that the stretch produced by $\operatorname{dist}_{k}(u, v)$ is at most $(2 k-1)$.
Lemma 3. $\operatorname{dist}_{k}(u, v) \leq(2 k-1) * \delta(u, v)$
Proof. Let $\Delta=\delta(u, v)$. We show that each iteration increases $\delta(w, u)$ by at most Δ. This proves our claim, since in the beginning $\delta(w, u)=0$ and there are at most $k-1$ iterations, we will end up with $\delta(w, u) \leq(k-1) * \Delta$. Now,

$$
\begin{aligned}
\delta(w, v) & \leq \delta(w, u)+\delta(u, v) \quad \text { (triangle inequality) } \\
& \leq(k-1) * \Delta+\Delta \\
& =k * \Delta
\end{aligned}
$$

so $\operatorname{dist}_{k}(u, v)=\delta(u, w)+\delta(w, v) \leq(2 k-1) * \Delta$.
Let u_{i}, v_{i} and w_{i} be the values of the variables u, v, w assigned with a given value of i ($u_{0}=$ $u, v_{0}=v$ and $\left.w_{0}=u\right)$, so $\delta\left(w_{0}, u_{0}\right)=0$. We want to show $\delta\left(w_{i}, u_{i}\right) \leq \delta\left(w_{i-1}, u_{i-1}\right)+\Delta$ if the i^{\prime} th iteration passes the test of the while loop. Then $w_{i-1} \notin B\left(v_{i-1}\right)$, so

$$
\begin{aligned}
\delta\left(w_{i-1}, v_{i-1}\right) & \geq \delta\left(A_{i}, v_{i-1}\right) \\
& =\delta\left(p_{i}\left(v_{i-1}\right), v_{i-1}\right)=\delta\left(w_{i}, u_{i}\right)
\end{aligned}
$$

So by using the triangle inequality, we get

$$
\begin{aligned}
\delta\left(w_{i}, u_{i}\right) & \leq \delta\left(w_{i-1}, v_{i-1}\right) \\
& \leq \delta\left(w_{i-1}, u_{i-1}\right)+\delta\left(u_{i-1}, v_{i-1}\right) \\
& =\delta\left(w_{i-1}, u_{i-1}\right)+\Delta
\end{aligned}
$$

2.4 Example Distance Query

For the example distance query $\operatorname{dist}_{k}(H, A)$, we use the same graph and sets A_{i} as in the previous subsections.

$$
\begin{aligned}
& A_{0}=\{A, B, C, D, E, F, G, H\} \\
& A_{1}=\{B, E, F, G\} \\
& A_{2}=\{E, F\} \\
& A_{3}=\{E\} \\
& A_{4}=\emptyset
\end{aligned}
$$

Given those definitions, the following bunches $B(A)$ and $B(H)$ result:

$$
\begin{aligned}
B(A) & =\{A, B, F, E\} \\
B(H) & =\{H, G, F, E\}
\end{aligned}
$$

The following shows the query $\operatorname{dist}_{k}(H, A)$. Note that $\delta(F, A)$ is stored with the bunch of $\delta(F, A)$, as $F \in B(A)$, whereas $\delta(F, H)=\delta\left(A_{2}, H\right)$ is stored with $p_{2}(H)$. Also note that there exists a shorter path from $A \rightarrow C \rightarrow D \rightarrow H$ with $\delta(A, H)=6$.

$$
\begin{aligned}
& \operatorname{dist}_{k}(H, A) \\
& \left.\qquad \begin{array}{l}
i=0 \\
\quad \Rightarrow \\
\quad \Rightarrow \\
\quad \Rightarrow \leftarrow i \leftarrow H \notin p_{1}(A)=B \\
i=1
\end{array}\right) w=B \notin B(H) \\
& \quad \Rightarrow i \leftarrow i+1 \\
& \quad \Rightarrow w \leftarrow p_{2}(H)=F \\
& i=2: w=F \in B(A)
\end{aligned}
$$

$$
\Rightarrow \text { return } \underbrace{\delta(F, H)}_{4}+\underbrace{\delta(F, A)}_{3}
$$

References

[1] Thorup and Zwick. Approximate distance oracles. JACM: Journal of the ACM, 52, 2005.

