Fortgeschrittene Datenstrukturen — Vorlesung 12

Schriftführer: Johannes Bittner

26.1.2012

1 Sparse Bitmaps

Our final task is to prove the sparse bitmap theorem: represent a bit-vector B[0, n-1] containing u 1's in $O(u * \lg(n/u)) + o(n)$ bits such that rank, select and access to any B[i] can be answered in O(1) time. Note that the space is o(n) if u = o(n). Our strategy is to compress B such that arbitrary $C = O(\lg n)$ consecutive bits $B[i \dots i + C - 1]$ can be accessed in O(1) time. Then we can re-use the rank and select data structures from the previous section: whenever they need to make a table lookup on a block of size $\frac{\lg n}{2}$, we load those bits in O(1) time. Accessing B[i] works similar: extract the bit from its corresponding $\lg n$ -sized chunk using bit-operations on words.

Again, we divide B into blocks of size $s = \frac{\lg n}{2}$. Each block B_i will be represented *individually* by two values, where i is the block index:

- 1. u_i : the *number* of 1's in the block.
- 2. o_i : an *index* in an enumeration of all $\binom{s}{u_i}$ bit-vectors of length s containing u_i 1's.

To recover the original block contents from a (u_i, o_i) -pair, we store a universal lookup table BlkContents, where $BlkContents[u_i][o_i]$ contains the original s bits of a block that is encoded by (u_i, o_i) . We now show how to store and recover the (u_i, o_i) -pair efficiently.

The u_i 's are stored in an array $U[0, \frac{n}{s}]$ containing numbers of size $\lg s$ bits, and the o_i 's are stored in a *bit stream* O of variable-length numbers. In order to recover the o_i -values from O, we use again a 2-level storage scheme: group s consecutive blocks into *superblocks* of size $s' = s^2$ and store in $SBlk[i_{SBlk}]$ the beginning of o_i 's in O, where $0 \leq i_{SBlk} \leq \lceil \frac{n}{s'} \rceil - 1$. In a second table Blk[i], we store the beginning of the description of o_i in O, but this time only relative to the beginning of the corresponding superblock. Those two tables allow to recover the o_i 's for any block i_{Blk} .

1.1 Space analysis

$$\begin{split} |U| &= \frac{n}{s} * \lg s = O(\frac{n * \lg \lg n}{\lg n}) \\ |SBlk| &= \frac{n}{s'} * \lg n = O(\frac{n}{\lg n}) \\ |Blk| &= \frac{n}{s'} * \lg s' = O(\frac{n * \lg \lg n}{\lg n}) \\ |BlkContents| &= \sum_{u=0}^{s} {\binom{s}{u}} * s \\ &\leq s * 2^{s} * s = O(\sqrt{n} \lg^{2} n) \\ |O| &= \sum_{i=0}^{n/s} [\lg \binom{s}{u_{i}}]^{1} \\ &\leq \sum \lg \binom{n}{u} + \frac{n}{s} \\ &\leq \lg \frac{n!}{u! * (n-u)!} + \frac{n}{s} \\ &= \lg \frac{n! (n-1) * \cdots * (n-u+1) * (n-u) * \cdots * 1}{u! * (n-u) * \cdots * 1} + \frac{n}{s} \\ &\leq \lg \frac{n^{u}}{u!} + \frac{n}{s} \\ &\leq \lg \frac{n^{u}}{u!} + \frac{n}{s} \\ &\leq \lg \frac{n^{u} * e^{u}}{u^{u}} + \frac{n}{s} \\ &\leq \lg \frac{n^{u} * e^{u}}{u} + \frac{n}{s} \end{split}$$
(Stirling's approximation) \\ &= O(u \lg \frac{n}{u} + O(\frac{n}{\lg n}) \end{split}

1.2 Example of bit vector compression

With the data structures below, accessing a bit in B, for example B[18], could be achieved as follows:

- Determine block $i = \frac{18}{s} = 4$ and superblock $i_{SBlk} = \frac{18}{s'} = 1$.
- We now want to recover o_4 . The value in SBlk is an index into the array O, so we then read $O[SBlk[i_{Sblk}]] = 10$. Furthermore, we need Blk[i] = 0. The index into O for retrieving o_4 is thus 10 + 0 = 10, as Blk[i] is relative to the beginning of the superblock. Therefore, $o_4 = 10$.
- Together with $u_4 = 1$, which can be retrieved from array U, we read BlkContents[1][10] = 0010.

0	4	8	12	16	20	24	28	32	36	40	44	
0110	0010	0011	0010	0010	1000	0110	0000	1000	1010	1100	1000	B

Figure 1: Bitmap B, with s = 4 and s' = 16.

2	1	2	1	1	1	2	0	1	2	2	1	$\left. \right\} U$
---	---	---	---	---	---	---	---	---	---	---	---	---------------------

Figure 2: Array U, containing the number of 1's for each block in B.

010	10	101	10	10	00	010	0	00	001	000	00	$\Big] \} C$
-----	----	-----	----	----	----	-----	---	----	-----	-----	----	--------------

Figure 3: Array O, containing the o_i 's.

0	10	18	$\} SBlk$
---	----	----	-----------

Figure 4: Array SBlk, the values are indices into the O array.

0	3	5	8	0	2	4	7	0	2	5	8	Blk
---	---	---	---	---	---	---	---	---	---	---	---	-----

Figure 5: Array Blk, the values are arrays into the O array again, but this time relative to the superblock.

	(a)	Blk	Con	tent	s[2]			(b) <i>E</i>	BlkC	onte	nts[1]		(c)	Blk	Cont	tents	s[0]
	o_i		ł	oloc	k			C	D_i	ł	oloc	k			o_i	ł	oloc	к	
0	0	0	1	1	0	0	-	0	0	1	0	0	0	-	0	0	0	0	0
0	0	1	1	0	1	0		0	1	0	1	0	0						
0	1	0	0	1	1	0		1	0	0	0	1	0						
0	1	1	1	0	0	1		1	1	0	0	0	1						
1	0	0	0	1	0	1													
1	0	1	0	0	1	1													

Table 1: $BlkContents[u_i][o_i]$

2 Distance Oracles in Graphs

In this chapter we show how to preprocess a graph G = (V, E) with |V| = n nodes and |E| = m vertices such that subsequent approximate distance-queries in G can be answered efficiently.

2.1 Basic Definitions

Let G = (V, E) be a *weighted* undirected graph with nonnegative edge weights $\omega(e)$ for $e \in E$. The distance $\delta(u, v)$ between two arbitrary nodes is the weighted path-length of the shortest path between u and v, in symbols:

$$\delta(u, v) = \min\left\{\sum_{e \in \Pi} \omega(e) : \Pi \text{ is } u\text{-to-}v \text{ path } \right\}$$

Let $\hat{\delta}$ be an *estimate* to $\delta(u, v)$. We say that $\hat{\delta}(u, v)$ is of *stretch* t iff

$$\delta(u,v) \le \hat{\delta}(u,v) \le t * \delta(u,v)$$

The aim of this chapter is to show the following theorem:

Theorem 1. For any parameter $k \ge 1$, a graph G can be preprocessed in expected $O(kn^{1/k}(n \lg n + m))$ time, producing a data structure of $O(kn^{1+1/k})$ size, such that subsequent approximate distance queries can be answered in O(k) time, with stretch $t \le 2k - 1$.

Note that the theorem only considers pure *distance* queries. However, it is also possible to return a corresponding path in constant time per edge.

2.2 Approximate Distance Oracles for Metric Spaces

Let us first assume that we are given an $(n \times n)$ distance matrix representing a finite *metric* δ on V. For example, we can assume that δ is the shortest path metric induced by the graph G. An example of a graph is shown in Figure 6, with its corresponding distance matrix in Table 2.

	A	В	\mathbf{C}	D	Е	\mathbf{F}	G	Η
А	0	1	2	3	4	3	8	6
В		0	2	3	5	3	8	6
С			0	1	3	1	6	4
D				0	4	2	5	3
Е					0	2	4	6
F						0	6	4
G							0	2
Η								0

Table 2: Example of distance matrix, representing δ of G.

Figure 6: Example for graph G.

2.2.1 Preprocessing

The preprocessing algorithm starts by constructing a non-decreasing sequence of sets

$$V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_{k-1} \supseteq A_k = \emptyset$$

in a randomized manner. The rule is that each element of A_{i-1} is placed in A_i independently, with probability $n^{-1/k}$. We assume that $A_{k-1} \neq \emptyset$ (otherwise the construction has to be restarted). The expected size $Exp[|A_i|]$ of A_i , for $0 \le i \le k$, is

$$\begin{aligned} Exp[|A_i|] &= |V| &* Prob[v \in A_j \forall 1 \le j \le i] \\ &= n &* \underbrace{n^{-1/k} * n^{-1/k} * \cdots * n^{-1/k}}_{i \text{ times}} \\ &= n^{1-i/k} \end{aligned}$$

For each vertex $v \in V$ and every index i = 0, ..., k - 1, we compute and store $\delta(A_i, v)$, the smallest distance from v to a vertex in A_i . The algorithm also computes and stores an element $p_i(v)$, the witness, that is nearest to A_i . That is, $\delta(p_i(v), v) = \delta(A_i, v)$. We define $\delta(A_k, v) = \infty$ for all $v \in V$ and leave $p_k(v)$ undefined.

Example 1. Let $A_1 = \{B, E, F, G\}$, $A_2 = \{E, F\}$, $A_3 = \{E\}$ and $A_4 = \emptyset$. Then $\delta(A_i, v)$ and $p_i(v)$ have the values as shown in Table 3.

The size of this table is O(k * n).

2.2.2 Bunches

For each vertex $v \in V$, the algorithm also computes a bunch $B(v) \subseteq V$ as follows. Informally, a vertex w is put into the bunch of v if w is in A_i , but not in A_{i+1} , and it is closer to v than v is to A_{i+1} . In symbols,

		Ċ	$\delta(A_i)$	(v)					$p_i(i$))		
v	i =	0	1	2	3	4	i =	0	1	2	3	4
А		0	1	3	4	∞		А	В	F	Е	\perp
В		0	0	3	5	∞		В	В	\mathbf{F}	Ε	\perp
\mathbf{C}		0	1	1	3	∞		\mathbf{C}	\mathbf{F}	\mathbf{F}	\mathbf{E}	\perp
D		0	2	2	4	∞		D	\mathbf{F}	\mathbf{F}	\mathbf{E}	\perp
Ε		0	0	0	0	∞		\mathbf{E}	Ε	\mathbf{E}	\mathbf{E}	\perp
\mathbf{F}		0	0	0	2	∞		\mathbf{F}	\mathbf{F}	\mathbf{F}	Е	\perp
G		0	0	4	4	∞		G	G	Е	Е	\perp
Η		0	2	4	6	∞		Η	G	F	Е	\bot

Table 3: $\delta(A_i, v)$ and $p_i(v)$ of graph shown in Figure 6.

 $w \in B(v) \Leftrightarrow \exists i : w \in A_i \setminus A_{i+1} \text{ and } \delta(w, v) < \delta(A_{i+1}, v)$

A schematic view of bunches, assuming Euclidian distances, is shown in Figure 7. The arrows point to the elements which belong to B(v). Note that since $\delta(A_k, v) = \infty$, we get that $A_{k-1} \subseteq B(v)$ for every $v \in V$. This is shown in Figure 7, where all elements of A_2 are included in B(v).

Figure 7: Schematic view of bunches

Example 2. B(A) is the bunch of A, using the values of Table 3.

$$B(A) = \left\{ \underbrace{A}_{0=\delta(A,A)<\delta(A_1,A)=1}, \underbrace{B}_{1=\delta(A,B)<\delta(A_2,A)=3}, \underbrace{F}_{3=\delta(A,F)<\delta(A_3,A)=4}, \underbrace{E}_{4=\delta(A,E)<\delta(A_4,A)=\infty} \right\}$$

The bunch B(v) is stored in a perfect hash table of size O(|B(v)|), such that for an arbitrary $w \in V$ it is possible in O(1) time to tell if $w \in B(v)$. If $w \in B(v)$, we also store the distance $\delta(v, w)$. We now bound the *expected sizes* of the bunches.

1

Lemma 2. The expected size of B(v) is $k * n^{1/k}$.

Proof. We show that in any iteration of the preprocessing algorithm, the bunch grows only by $n^{1/k}$ elements in expectation, in symbols:

$$Exp[|B(v) \cap (A_i \setminus A_{i+1})|] = n^{1/k} \forall 0 \le i \le k-1$$

For i = k - 1 the claim is trivial, as all elements from A_{k-1} are in the bunch and $Exp[|A_{k-1}|] = n^{1-\frac{k-1}{k}} = n^{1/k}$. For i < k - 1, let w_1, \ldots, w_x be the elements of A_i arranged in nondecreasing order of distance from v. Figure 8 shows a schematic view of those nodes, again assuming Euclidian distances.

Figure 8: Sketch showing w_1, \ldots, w_x

If $w_j \in B(v)$, then $\delta(w_j, v) < \delta(A_{i+1}, v)$, and thus $w_1, \ldots, w_j \notin A_{i+1}$. So $Prob[w_j \in B(v)] \le (1-p)^j$ for p being the probability that an element from A_i is placed into A_{i+1} , as all w_1, \ldots, w_j must not be in A_{i+1} . So the expected size of $B(v) \cap (A_i \setminus A_{i+1})$ is at most

$$\sum_{j=1}^{x} Prob[w_j \in B(v)]$$

$$\leq \sum_{j=1}^{x} (1-p)^j$$

$$\leq \sum_{j=0}^{\infty} (1-p)^j$$

$$< p^{-1} \qquad (geometric series)$$

$$= n^{1/k} \qquad (by definition of A_{i+1})$$

Using this lemma, the total size of all hash tables is $\sum_{v \in V} |B(v)| = n^{1+1/k}$ in expectation. As usual by rerunning the algorithm until the data structure is small enough this is the space in the worst case; the expected number of trials to achieve this space is constant by *Markov's inequality*. The overall *running time* is $O(n^2)$.

2.3 Answering Distance Queries

The idea of the query algorithm is to iterate through the preprocessed layers until the bunches intersect, as illustrated in Figure 9. Note that $\delta(p_3(u), v)$ is stored in the hash table of B(v), and $\delta(u, p_3(u))$ is stored in the global table of Section 2.2.1.

Figure 9: Sketch of the query algorithm

The complete algorithm is best shown by means of pseudo-code, which is shown in Algorithm 1. Note that the algorithm *always terminates*, as if i = k - 1, $w \in A_{k-1}$ and $A_{k-1} \subseteq B(v)$ for every $v \in V$.

```
Algorithm 1: Computing dist_k(u, v)w \leftarrow u;i \leftarrow 0;while w \notin B(v) doi \leftarrow i + i;w \leftarrow p_i(v);(u, v) \leftarrow (v, u);endreturn \delta(w, u) + \delta(w, v);
```

We finally show that the stretch produced by $dist_k(u, v)$ is at most (2k - 1).

Lemma 3. $dist_k(u, v) \le (2k - 1) * \delta(u, v)$

Proof. Let $\Delta = \delta(u, v)$. We show that each iteration increases $\delta(w, u)$ by at most Δ . This proves our claim, since in the beginning $\delta(w, u) = 0$ and there are at most k - 1 iterations, we will end up with $\delta(w, u) \leq (k - 1) * \Delta$. Now,

$$\delta(w, v) \leq \delta(w, u) + \delta(u, v)$$

$$\leq (k - 1) * \Delta + \Delta$$

$$= k * \Delta$$

(triangle inequality)

so $dist_k(u, v) = \delta(u, w) + \delta(w, v) \le (2k - 1) * \Delta$.

Let u_i, v_i and w_i be the values of the variables u, v, w assigned with a given value of i ($u_0 = u, v_0 = v$ and $w_0 = u$), so $\delta(w_0, u_0) = 0$. We want to show $\delta(w_i, u_i) \leq \delta(w_{i-1}, u_{i-1}) + \Delta$ if the *i'th* iteration passes the test of the while loop. Then $w_{i-1} \notin B(v_{i-1})$, so

$$\delta(w_{i-1}, v_{i-1}) \geq \delta(A_i, v_{i-1}) \\ = \delta(p_i(v_{i-1}), v_{i-1}) = \delta(w_i, u_i)$$

So by using the triangle inequality, we get

$$\delta(w_{i}, u_{i}) \leq \delta(w_{i-1}, v_{i-1}) \\ \leq \delta(w_{i-1}, u_{i-1}) + \delta(u_{i-1}, v_{i-1}) \\ = \delta(w_{i-1}, u_{i-1}) + \Delta$$

г		٦
н		1
1		

2.4 Example Distance Query

For the example distance query $dist_k(H, A)$, we use the same graph and sets A_i as in the previous subsections.

$$A_{0} = \{A, B, C, D, E, F, G, H\}$$

$$A_{1} = \{B, E, F, G\}$$

$$A_{2} = \{E, F\}$$

$$A_{3} = \{E\}$$

$$A_{4} = \emptyset$$

Given those definitions, the following bunches B(A) and B(H) result:

$$B(A) = \{A, B, F, E\}$$
$$B(H) = \{H, G, F, E\}$$

The following shows the query $dist_k(H, A)$. Note that $\delta(F, A)$ is stored with the bunch of $\delta(F, A)$, as $F \in B(A)$, whereas $\delta(F, H) = \delta(A_2, H)$ is stored with $p_2(H)$. Also note that there exists a shorter path from $A \to C \to D \to H$ with $\delta(A, H) = 6$.

$$dist_{k}(H, A)$$

$$i = 0: w = H \notin B(A)$$

$$\Rightarrow i \leftarrow i + 1$$

$$\Rightarrow w \leftarrow p_{1}(A) = B$$

$$i = 1: w = B \notin B(H)$$

$$\Rightarrow i \leftarrow i + 1$$

$$\Rightarrow w \leftarrow p_{2}(H) = F$$

$$i = 2: w = F \in B(A)$$

$$\Rightarrow \text{return } \underbrace{\delta(F,H)}_{4} + \underbrace{\delta(F,A)}_{3}$$

References

[1] Thorup and Zwick. Approximate distance oracles. JACM: Journal of the ACM, 52, 2005.