KIT

Karlsruhe Institute of Technology

Text Indexing

Lecture 01: Tries
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ®®: www.creativecommons.org/licenses/by-sa/4.0 | commit 6447110 compiled at 2021-10-18-13:16

KIT — The Research University in the Helmholtz Association WWW. kit.edu


https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

String Dictionary

Given a set S C ¥ * of prefix-free strings, we want to
answer:

®isxeX*inS @ predecessor and
®waddx ¢ Sto S successor of
XeEX*inS

® remove x € Sfrom S

214 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



String Dictionary

Given a set S C ¥ * of prefix-free strings, we want to
answer:

®isxeX*inS @ predecessor and
®waddx ¢ Sto S successor of
XeEX*inS

® remove x € Sfrom S

Givenaset S = {Sy, ..., S} of prefix-free strings,
a trie is a labeled rooted tree G = (V, E) with:

1. k leaves

2. VS; € Sthere is a path from the root to a leaf,
such that the concatenation of the labels is S;

3. Vv € V the labels of the edges (v, -) are unique

2/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



KIT

String Dictionary
Given a set S C ¥ * of prefix-free strings, we want to b c
answer: / \
®isxeX*inS @ predecessor and o a
®addx ¢ Sto S successor of
® remove x € S from S HELInS 7& y\
-
Givenaset S = {Sy, ..., S} of prefix-free strings,
a trie is a labeled rooted tree G = (V, E) with:

1. k leaves S = {bear, bee, cab, car}

2. VS; € Sthere is a path from the root to a leaf,
such that the concatenation of the labels is S;

3. Vv € V the labels of the edges (v, -) are unique

2114 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

8 WA

a if leaf is found backirack and delete unique path

Insert

® insert rest of pattern S = {bear, bee, cab, car}

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

8 WA

a if leaf is found backirack and delete unique path

-
Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b
/ \

@ start at root and follow existing children
Contains e

@ js |eaf found and whole pattern is matched
a e r
Delete / \ / \

a if leaf is found backirack and delete unique path

Insert
® insert rest of pattern S = {bear, bee, cab, car}

a s inS

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

8 WA

a if leaf is found backirack and delete unique path

-
Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

8 WA

a if leaf is found backirack and delete unique path

-
Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S

® remove bear from S

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

72 WA

a if leaf is found backirack and delete unique path

-
Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S

® remove bear from S

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

NN

a if leaf is found backirack and delete unique path

Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S
® remove bear from S

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

NN

a if leaf is found backirack and delete unique path

Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S
® remove bear from S

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Queries: Insert, Contains, and Delete a Pattern

Same for all b c
® start at root and follow existing children — T

a

Contains e
@ js |eaf found and whole pattern is matched

NN

a if leaf is found backirack and delete unique path

Insert
® insert rest of pattern S = {bear, bee, cab, car}
@ jscabin S
® remove bear from S
® how can we find the predecessor of can?

314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Karlsruhe Institute of Technology

Why Prefix-Free A“(IT

@ insert beer

e

N, N

414 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Karlsruhe Institute of Technology

Why Prefix-Free A“(IT

@ insert beer

e

N, N

414 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Karlsruhe Institute of Technology

Why Prefix-Free A“(IT

@ insert beer

e

N, N

® pee cannot be found

414 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Karlsruhe Institute of Technology

Why Prefix-Free A“(IT

® insert beer b/ \c

® pee cannot be found

& remember which node refers to a string e

N, N

414 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Karlsruhe Institute of Technology

Why Prefix-Free A“(IT

® insert beer b @
® bee cannot be found — T
® remember which node refers to a string e a
® or (much preferred) make strings prefix free 7 x y \
r r
[

414 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Ui

Next Steps

® alphabet ¥ of size o

® k strings {si, ..., Sk} over the alphabet ¥
® total size of strings is N = ¢, |sj|

® queries ask for pattern P of length m

514 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Next Steps

® alphabet ¥ of size o

® k strings {si, ..., Sk} over the alphabet ¥
® total size of strings is N = ¢, |sj|

® queries ask for pattern P of length m

We Want to Know

® query times
® space requirements

514 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Ui

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



Next Steps

® alphabet ¥ of size o

® k strings {si, ..., Sk} over the alphabet ¥
® total size of strings is N = ¢, |sj|

® queries ask for pattern P of length m

We Want to Know

® query times
® space requirements

® both depend on the representation of children
® |ook at different representations

514 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Ui

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



Next Steps

® alphabet ¥ of size o

® k strings {si, ..., Sk} over the alphabet ¥
® total size of strings is N = ¢, |sj|

® queries ask for pattern P of length m

We Want to Know

® query times
® space requirements

® both depend on the representation of children
® |ook at different representations

514 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



Next Steps

® alphabet ¥ of size o

® k strings {si, ..., Sk} over the alphabet ¥
® total size of strings is N = ¢, |sj|

® queries ask for pattern P of length m

We Want to Know

® query times
® space requirements

® both depend on the representation of children
® |ook at different representations

514 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Ui

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



Next Steps

® alphabet ¥ of size o

® k strings {si, ..., Sk} over the alphabet ¥
® total size of strings is N = ¢, |sj|

® queries ask for pattern P of length m

We Want to Know

® query times
® space requirements

® both depend on the representation of children
® |ook at different representations

514 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Ui

Karlsruhe Institute of Technology

concrete representation

(

Institute for Theoretical Computer Science, Algorithmics Il



Arrays of Variable Size

@ store children (character and pointer) in the
order they are added

@ to find child scan array

® to delete child swap with last and remove last
@ children are not ordered

6/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

ALA ‘\A

Institute for Theoretical Computer Science, Algorithmics Il



Ui

Arrays of Variable Size

@ store children (character and pointer) in the
order they are added

@ to find child scan array

® to delete child swap with last and remove last
@ children are not ordered

iy
¥ RERARRRE
/X

Query Time (Contains)
® O(m-o)

6/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Ui

Arrays of Variable Size

@ store children (character and pointer) in the
order they are added

@ to find child scan array

® to delete child swap with last and remove last
@ children are not ordered

iy
¥ RERARRRE
/X

Query Time (Contains)
® O(m-o)

® O(N) words

6/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Arrays of Fixed Size

& children (pointer) are stored in arrays of size o
® use null to mark non-existing children
a finding and deleting children is trivial

74 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

.- C4 C5 Cs -

p|p|¢ |_,T_|

Enlaml

ALAATA

Institute for Theoretical Computer Science, Algorithmics Il



Ui

Arrays of Fixed Size

& children (pointer) are stored in arrays of size o

® use null to mark non-existing children D e & G

p|r|¢ |_,T_|

a finding and deleting children is trivial

Enlaml

Query Time (Contains)
® O(m) @ optimal

AlAATA

774 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Ui

Arrays of Fixed Size

& children (pointer) are stored in arrays of size o

® use null to mark non-existing children

a finding and deleting children is trivial

iy
[ Endnnt ELL] m

Query Time (Contains)
® O(m) @ optimal

® O(N - o) words @ very bad

774 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Hash Tables ﬂ(IT

Karlsruhe Institute of Technology

@ ejther use a hash table per node
® has overhead

® or use global hash table for whole trie

8/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Hash Tables ﬂ(IT

Karlsruhe Institute of Technology

@ ejther use a hash table per node
® has overhead

® or use global hash table for whole trie

Query Time (Contains)
® O(m) w.h.p.

8/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Hash Tables ﬂ(IT

Karlsruhe Institute of Technology

@ ejther use a hash table per node
® has overhead

® or use global hash table for whole trie

Query Time (Contains)
® O(m) w.h.p.

Space
® O(N) words

8/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Balanced Search Trees

@ children are stored in balanced search trees
® e.g., AVL tree, red-black tree, . ..
® in static setting sorted array and binary search

914 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

ALTARATA

Institute for Theoretical Computer Science, Algorithmics Il



Ui

Balanced Search Trees
& children are stored in balanced search trees (j)
® e.g., AVL tree, red-black tree, . .. |
® in static setting sorted array and binary search &
Query Time (Contains) / \
1 Ce

® O(m-lgo)

>
ALTAATA

914 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Balanced Search Trees

@ children are stored in balanced search trees
® e.g., AVL tree, red-black tree, . ..
® in static setting sorted array and binary search

Query Time (Contains)
® O(m-lgo)

® O(N) words

914 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Ui

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

Karlsruhe Institute of Technology

Ci~ C C3

1
A

Cs Cs_C7

N N

Nt - ) ad \YAY%

A

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

Karlsruhe Institute of Technology

10203 Cs Cs C7

/ V4\5\

A A Wi wa w3 W Wy

w; = # leaves below v;

— 9IS

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

B VA

03 C4 Cs Cs

// \\

AAALAALA SR

w; = # leaves below v;

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

C4

Vs

D V¥
<0

03 C4 Cs Cs

// \\

AAALAALA SR

w; = # leaves below v;

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

C4

Vs

D V¥
<0

03040506

// \\

AAALAALA SR

w; = # leaves below v;

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

C4

Vs

D V¥
<0

03040506

// \\

AAALAALA SR

w; = # leaves below v;

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2) A“(IT

) al \YAY
S<00

54—0(9

03040506

// \\

Vs

AAALAALA n
I

w; = # leaves below v;

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



SKIT

Weight-Balanced Search Trees (1/2)
s |0 Daw

= # leaves below v; wﬁ w;

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (1/2)

/

Ad

10/14 2021-10-18

Ci

Cz

C3

— 9IS

\

\

‘A

Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

C.
j
Coo > V2 Cs
i
Wy Wo w3 I Wl Wy
Wy w2 w3 We| W7
w; = # leaves below v; ws | Wy

Institute for Theoretical Computer Science, Algorithmics Il



SKIT

Weight-Balanced Search Trees (1/2)

w; = # leaves below v; we| | Wy

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



SKIT

Weight-Balanced Search Trees (1/2)

w; = # leaves below v; we| | Wy

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (2/2) ﬂIT

® use weight-balanced search trees at each node

Vi V3

Vg <o
Wy wo w3 Wy Ws We W7
w; = # leaves below v;

1114 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (2/2)

® use weight-balanced search trees at each node

Query Time (Contains)
® O(m+Igk)
® match character of pattern
® or halve number of strings

1114 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

SKIT

Karlsruhe Institute of Technology

Vi V3

Ve
wi w2 w3 Wy Ws We i W7
w; = # leaves below v;

Institute for Theoretical Computer Science, Algorithmics Il



Weight-Balanced Search Trees (2/2) IT

® use weight-balanced search trees at each node

Query Time (Contains)
® O(m+Igk)
® match character of pattern

® or halve number of strings

Vi V3

Ve
Space W o ows We v W
® O(N) words
w; = # leaves below v;

1114 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Two-Levels with Weight-Balanced Search Trees

& split tree into upper and lower half

@ |ower half deepest nodes such that subtrees
have size O(o)

® weight-balanced search trees for lower half upper half

" fixed-si i half |
ixed-size arrays in upper ha lower half AA A&gze o

1214 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



SKIT

Two-Levels with Weight-Balanced Search Trees

@ split tree into upper and lower half

@ |ower half deepest nodes such that subtrees
have size O(o)

® weight-balanced search trees for lower half upper half

® fixed-size arrays in upper half @ branching .
nodes only lower half AAA ‘ >size o

Query Time (Contains)
® upper half: O(m)
® [ower half: O(m + Ig o)
® total: O(m+ lg o)

12/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



SKIT

Two-Levels with Weight-Balanced Search Trees

@ split tree into upper and lower half

@ |ower half deepest nodes such that subtrees

have size O(o)

® weight-balanced search trees for lower half upper half

® fixed-size arrays in upper half @ branching '
nodes only lower half AAA ‘ >size o

Query Time (Contains)

® upper half: O(m) ® upper half: O(N) words
® |ower half: O(m + Ig o) ® O(N/o) branching nodes
® total: O(m+ lg o) ® |ower half: O(N) words

a total: O(N) words

12/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



KIT

Theoretical Comparison

Representation Query Time (Contains) Space in Words

arrays of variable size O(m- o) O(N)

arrays of fixed size O(m) O(N - o)

hash tables O(m) w.h.p. O(N)

balanced search trees O(m-lgo) O(N)

weight-balanced search trees O(m+lgk) O(N)

two-levels with weight-balanced search trees  O(m + g o) O(N)

1314 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics Il



Compact Trie

® fries have unnecessary nodes
® branchless paths can be removed
® edge labels can consist of multiple characters

14/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology
b/ —~

N, N

Institute for Theoretical Computer Science, Algorithmics Il



Compact Trie

® fries have unnecessary nodes
® branchless paths can be removed
® edge labels can consist of multiple characters

@ A compact trie is a trie where all branchless
paths are replaced by a single edge.

® The label of the new edge is the concatenation
of the replaced edges’ labels.

14/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology
b/ —~

N, N

Institute for Theoretical Computer Science, Algorithmics Il



Compact Trie

® fries have unnecessary nodes
® branchless paths can be removed
® edge labels can consist of multiple characters

@ A compact trie is a trie where all branchless
paths are replaced by a single edge.

® The label of the new edge is the concatenation
of the replaced edges’ labels.

14/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries

KIT

Karlsruhe Institute of Technology

@

%Y N

Institute for Theoretical Computer Science, Algorithmics Il



