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Given a set S ⊆ Σ? of prefix-free strings, we want to
answer:

is x ∈ Σ? in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ? in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique
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S = {bear, bee, cab, car}
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Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free
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S = {bear, bee, cab, car}

is cab in S

remove bear from S

how can we find the predecessor of can?
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insert beer

bee cannot be found

remember which node refers to a string

or (much preferred) make strings prefix free
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Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation
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store children (character and pointer) in the
order they are added

to find child scan array

to delete child swap with last and remove last
� children are not ordered

Query Time (Contains)
O(m · σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c3 c5 c1 c6 c2 c4 c7
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children (pointer) are stored in arrays of size σ

use null to mark non-existing children

finding and deleting children is trivial

Query Time (Contains)
O(m) � optimal

Space
O(N · σ) words � very bad

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

. . . c1 . . . c2 c3 . . . c4 c5 c6 . . . c7 . . .

. . . . . . . . . . . . . . .

σ entries
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either use a hash table per node
� has overhead

or use global hash table for whole trie

Query Time (Contains)
O(m) w.h.p.

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

h
( v

c1

)
h
( v

c2

)
h
( v
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)
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( v

c4

)
h
( v

c5

)
h
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c6

)
h
( v

c7

)
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children are stored in balanced search trees

e.g., AVL tree, red-black tree, . . .

in static setting sorted array and binary search

Query Time (Contains)
O(m · lg σ)

Space
O(N) words
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c1 c2 c3 c4 c5 c6 c7

c4

c2

c1 c3

c6
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v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi
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use weight-balanced search trees at each node

Query Time (Contains)
O(m + lg k)

match character of pattern

or halve number of strings

Space
O(N) words
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Weight-Balanced Search Trees (2/2)



use weight-balanced search trees at each node

Query Time (Contains)
O(m + lg k)

match character of pattern

or halve number of strings

Space
O(N) words
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c1 c3
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Weight-Balanced Search Trees (2/2)



split tree into upper and lower half

lower half deepest nodes such that subtrees
have size O(σ)

weight-balanced search trees for lower half

fixed-size arrays in upper half � branching
nodes only

Query Time (Contains)
upper half: O(m)

lower half: O(m + lg σ)

total: O(m + lg σ)

upper half

lower half size σ

Space
upper half: O(N) words
� O(N/σ) branching nodes

lower half: O(N) words

total: O(N) words
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Two-Levels with Weight-Balanced Search Trees



split tree into upper and lower half

lower half deepest nodes such that subtrees
have size O(σ)

weight-balanced search trees for lower half

fixed-size arrays in upper half � branching
nodes only

Query Time (Contains)
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lower half: O(m + lg σ)
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upper half

lower half size σ

Space
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lower half: O(N) words

total: O(N) words
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Two-Levels with Weight-Balanced Search Trees



split tree into upper and lower half

lower half deepest nodes such that subtrees
have size O(σ)

weight-balanced search trees for lower half

fixed-size arrays in upper half � branching
nodes only

Query Time (Contains)
upper half: O(m)

lower half: O(m + lg σ)

total: O(m + lg σ)

upper half

lower half size σ

Space
upper half: O(N) words
� O(N/σ) branching nodes

lower half: O(N) words

total: O(N) words
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Two-Levels with Weight-Balanced Search Trees



Representation Query Time (Contains) Space in Words

arrays of variable size O(m · σ) O(N)

arrays of fixed size O(m) O(N · σ)

hash tables O(m) w.h.p. O(N)

balanced search trees O(m · lg σ) O(N)

weight-balanced search trees O(m + lg k) O(N)

two-levels with weight-balanced search trees O(m + lg σ) O(N)
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Theoretical Comparison



tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.
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Compact Trie


