
Text Indexing

Lecture 01: Tries

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 6447110 compiled at 2021-10-18-13:16

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Given a set S ⊆ Σ? of prefix-free strings, we want to
answer:

is x ∈ Σ? in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ? in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

2/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

String Dictionary

Given a set S ⊆ Σ? of prefix-free strings, we want to
answer:

is x ∈ Σ? in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ? in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

2/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

String Dictionary

Given a set S ⊆ Σ? of prefix-free strings, we want to
answer:

is x ∈ Σ? in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ? in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

2/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

String Dictionary

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

Same for all

start at root and follow existing children

Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
� otherwise not found

Insert

insert rest of pattern � prefix-free

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}
is cab in S

remove bear from S

how can we find the predecessor of can?

3/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Queries: Insert, Contains, and Delete a Pattern

insert beer

bee cannot be found

remember which node refers to a string

or (much preferred) make strings prefix free

b

e

a

r

e

c

a

b r

r

4/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Why Prefix-Free

insert beer

bee cannot be found

remember which node refers to a string

or (much preferred) make strings prefix free

b

e

a

r

e

c

a

b r

r

4/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Why Prefix-Free

insert beer

bee cannot be found

remember which node refers to a string

or (much preferred) make strings prefix free

b

e

a

r

e

c

a

b r

r

4/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Why Prefix-Free

insert beer

bee cannot be found

remember which node refers to a string

or (much preferred) make strings prefix free

b

e

a

r

e

c

a

b r

r

4/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Why Prefix-Free

insert beer

bee cannot be found

remember which node refers to a string

or (much preferred) make strings prefix free

b

e

a

r

e

c

a

b r

r

4/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Why Prefix-Free

Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation

5/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Next Steps

Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation

5/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Next Steps

Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation

5/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Next Steps

Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation

5/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Next Steps

Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation

5/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Next Steps

Setting
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

We Want to Know
query times

space requirements

both depend on the representation of children

look at different representations

b c

e

a

r

e

a

b r

concrete representation

5/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Next Steps

store children (character and pointer) in the
order they are added

to find child scan array

to delete child swap with last and remove last
� children are not ordered

Query Time (Contains)
O(m · σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c3 c5 c1 c6 c2 c4 c7

6/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Arrays of Variable Size

store children (character and pointer) in the
order they are added

to find child scan array

to delete child swap with last and remove last
� children are not ordered

Query Time (Contains)
O(m · σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c3 c5 c1 c6 c2 c4 c7

6/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Arrays of Variable Size

store children (character and pointer) in the
order they are added

to find child scan array

to delete child swap with last and remove last
� children are not ordered

Query Time (Contains)
O(m · σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c3 c5 c1 c6 c2 c4 c7

6/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Arrays of Variable Size

children (pointer) are stored in arrays of size σ

use null to mark non-existing children

finding and deleting children is trivial

Query Time (Contains)
O(m) � optimal

Space
O(N · σ) words � very bad

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

. . . c1 . . . c2 c3 . . . c4 c5 c6 . . . c7 . . .

.

σ entries

7/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Arrays of Fixed Size

children (pointer) are stored in arrays of size σ

use null to mark non-existing children

finding and deleting children is trivial

Query Time (Contains)
O(m) � optimal

Space
O(N · σ) words � very bad

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

. . . c1 . . . c2 c3 . . . c4 c5 c6 . . . c7 . . .

.

σ entries

7/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Arrays of Fixed Size

children (pointer) are stored in arrays of size σ

use null to mark non-existing children

finding and deleting children is trivial

Query Time (Contains)
O(m) � optimal

Space
O(N · σ) words � very bad

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

. . . c1 . . . c2 c3 . . . c4 c5 c6 . . . c7 . . .

.

σ entries

7/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Arrays of Fixed Size

either use a hash table per node
� has overhead

or use global hash table for whole trie

Query Time (Contains)
O(m) w.h.p.

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

h
(v

c1

)
h
(v

c2

)
h
(v

c3

)
h
(v

c4

)
h
(v

c5

)
h
(v

c6

)
h
(v

c7

)

8/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Hash Tables

either use a hash table per node
� has overhead

or use global hash table for whole trie

Query Time (Contains)
O(m) w.h.p.

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

h
(v

c1

)
h
(v

c2

)
h
(v

c3

)
h
(v

c4

)
h
(v

c5

)
h
(v

c6

)
h
(v

c7

)

8/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Hash Tables

either use a hash table per node
� has overhead

or use global hash table for whole trie

Query Time (Contains)
O(m) w.h.p.

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

h
(v

c1

)
h
(v

c2

)
h
(v

c3

)
h
(v

c4

)
h
(v

c5

)
h
(v

c6

)
h
(v

c7

)

8/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Hash Tables

children are stored in balanced search trees

e.g., AVL tree, red-black tree, . . .

in static setting sorted array and binary search

Query Time (Contains)
O(m · lg σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

c2

c1 c3

c6

c5 c7

9/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Balanced Search Trees

children are stored in balanced search trees

e.g., AVL tree, red-black tree, . . .

in static setting sorted array and binary search

Query Time (Contains)
O(m · lg σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

c2

c1 c3

c6

c5 c7

9/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Balanced Search Trees

children are stored in balanced search trees

e.g., AVL tree, red-black tree, . . .

in static setting sorted array and binary search

Query Time (Contains)
O(m · lg σ)

Space
O(N) words

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

c2

c1 c3

c6

c5 c7

9/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Balanced Search Trees

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7

wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7

wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4

c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7

wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4

c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7

wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4

c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7

wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5

c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7

wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5

c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5

c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7

c4

v4
c2 c5v2

v5
c1 c3 c7

v1 v3

v7

c6v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

10/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (1/2)

use weight-balanced search trees at each node

Query Time (Contains)
O(m + lg k)

match character of pattern

or halve number of strings

Space
O(N) words

c4

c2

c1 c3

c5

c7

c6

v4
v2

v1 v3

v5
v7

v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

11/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (2/2)

use weight-balanced search trees at each node

Query Time (Contains)
O(m + lg k)

match character of pattern

or halve number of strings

Space
O(N) words

c4

c2

c1 c3

c5

c7

c6

v4
v2

v1 v3

v5
v7

v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

11/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (2/2)

use weight-balanced search trees at each node

Query Time (Contains)
O(m + lg k)

match character of pattern

or halve number of strings

Space
O(N) words

c4

c2

c1 c3

c5

c7

c6

v4
v2

v1 v3

v5
v7

v6

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w5 w6 w7

w6 w7wi = # leaves below vi

11/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Weight-Balanced Search Trees (2/2)

split tree into upper and lower half

lower half deepest nodes such that subtrees
have size O(σ)

weight-balanced search trees for lower half

fixed-size arrays in upper half � branching
nodes only

Query Time (Contains)
upper half: O(m)

lower half: O(m + lg σ)

total: O(m + lg σ)

upper half

lower half size σ

Space
upper half: O(N) words
� O(N/σ) branching nodes

lower half: O(N) words

total: O(N) words

12/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Two-Levels with Weight-Balanced Search Trees

split tree into upper and lower half

lower half deepest nodes such that subtrees
have size O(σ)

weight-balanced search trees for lower half

fixed-size arrays in upper half � branching
nodes only

Query Time (Contains)
upper half: O(m)

lower half: O(m + lg σ)

total: O(m + lg σ)

upper half

lower half size σ

Space
upper half: O(N) words
� O(N/σ) branching nodes

lower half: O(N) words

total: O(N) words

12/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Two-Levels with Weight-Balanced Search Trees

split tree into upper and lower half

lower half deepest nodes such that subtrees
have size O(σ)

weight-balanced search trees for lower half

fixed-size arrays in upper half � branching
nodes only

Query Time (Contains)
upper half: O(m)

lower half: O(m + lg σ)

total: O(m + lg σ)

upper half

lower half size σ

Space
upper half: O(N) words
� O(N/σ) branching nodes

lower half: O(N) words

total: O(N) words

12/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Two-Levels with Weight-Balanced Search Trees

Representation Query Time (Contains) Space in Words

arrays of variable size O(m · σ) O(N)

arrays of fixed size O(m) O(N · σ)

hash tables O(m) w.h.p. O(N)

balanced search trees O(m · lg σ) O(N)

weight-balanced search trees O(m + lg k) O(N)

two-levels with weight-balanced search trees O(m + lg σ) O(N)

13/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Theoretical Comparison

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

ar ca

ar

14/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Compact Trie

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

ar ca

ar

14/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Compact Trie

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

ar ca

ar

14/14 2021-10-18 Florian Kurpicz | Text Indexing | 01 Tries Institute for Theoretical Computer Science, Algorithmics II

Compact Trie

