KIT

Karlsruhe Institute of Technology

Text Indexing

Lecture 05: Burrows-Wheeler Transform
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @®®: www.creativecommons.org >s/by-sa/4.0 | commit a82b315 compiled at 2022-01-05-18:39

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

PINGO it

Karlsruhe Institute of Technology

https://pingo.scc.kit.edu/989087

2/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

https://pingo.scc.kit.edu/989087
https://pingo.scc.kit.edu/989087

Recap: Text-Compression

CIT

Karlsruhe Institute of Technology

Definition: LZ77 Factorization |] Definition: LZ78 Factorization |]

Given a text T of length n over an alphabet ¥, the
LZ77 factorization is

® 3 setof zfactors f;, f,...,f, € ¥, such that
@ T=ff...fbandforalli€[1,z]fis

® single character not occurringin f; ... fi_1 or

® |ongest substring occurring > 2 times in f; .. . f;

T = abababbbbaba$

.f1:a .f4=bbb
@ fHh=>0H ® f; = aba
lfg:abab .f6:$

3/24 2022-01-05

Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

Given a text T of length n over an alphabet ¥, the
LZ78 factorization is

® 3 setof zfactors fy, f,...,f, € T, such that
@ T=ff.. f,fh=ecandforallic[1,z]

wiffy...fi_y = T[1..j — 1], then f; is the longest
prefix of T[j..n], such that

Jk e[0,i),a € XU{$}: fk = fix

T = abababbbbaba$

-)‘1:3 .f4:abb .f7:$
.f2:b .f5:bb
® f3; =ab @ f; = aba

Institute for Theoretical Computer Science, Algorithmics Il

Ui

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array SA, for
i € [1, n] the Burrows-Wheeler transform is

BWTI] = {;[SA["] —1] gﬁ{g : :

4/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Burrows-Wheeler Transform [BW94] (1/2) ﬂ(IT

: : 1 2 3 4 5 6 7 8 9 10 11 12 13
leenatextTof length n and its suffix array SA, for T A b Aaboea D e alkhoa s
i € [1,n] the is
SA 1312 1 9 6 3 11 2 10 7 4 8 5
T[SA[i] — 1] SA[i] > 1
BWT[,.]:{[[]] [.] ICP 001225021140 3
$ SA[i] = 1 BWT a b $ ¢c ¢c b b aaaabob

4/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Burrows-Wheeler Transform [BW94] (1/2)

Given a text T of length n and its suffix array SA, for
i€[1,n]the is

T[SA[i] — 1] SA[i] > 1

BWTL = {$ SA[i] = 1

® character before the suffix in SA-order
® choose characters cyclic

4/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

1 2 4 5 6 7 8 9 10 11 12 13
T a b b c abc abba$
SA 13 12 9 6 3 11 2 10 7 4 8 5
LCP 0 O 2 25 0211 4 0 3
BWT a b c ¢c b b aaaabb

Institute for Theoretical Computer Science, Algorithmics Il

Burrows-Wheeler Transform [BW94] (1/2)

Given a text T of length n and its suffix array SA, for
i€[1,n]the is

T[SA[i] — 1] SA[i] > 1

BWTIi = {$ SA[i] = 1

® character before the suffix in SA-order
® choose characters cyclic

® can compute BWT in O(n) time

® for binary alphabet O(n/+/Ig n) time and
O(n/ Ig n) words space is possible [KK19%@

4/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

1 2 4 5 6 8 9 10 11 12 13
T a b b ¢ a c a b b a$
SA 13 12 9 6 3 11 2 10 7 4 8 5
LCP 0 O 2 25 021 1 4 0 3
BWT a b c ¢c b b aaaabb

Institute for Theoretical Computer Science, Algorithmics Il

Burrows-Wheeler Transform [BW94] (1/2)

Given a text T of length n and its suffix array SA, for
i€[1,n]the is

T[SA[i] — 1] SA[i 1
sy — | TISAN =11 SAlD >

$ SA[i] =1
® character before the suffix in SA-order
® choose characters cyclic

® can compute BWT in O(n) time

® for binary alphabet O(n/+/Ig n) time and
O(n/ Ig n) words space is possible [KK19%&

4/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

1 2 83 4 5 6 8 9 10 11 12 13
T a b ab c a c a b b a$
SA 1312 1 9 6 3 11 2 10 7 4 8 5
LCk 0 0 1 2 2 5 0 2 1 1 4 0 3
BWT a b $ c c b b a a a a b b

& definition is not very descriptive
® easy way to compute BWT
® what can we do with the BWT

Institute for Theoretical Computer Science, Algorithmics Il

KIT

Burrows-Wheeler Transform (2/2)

T = ababcabcabba$

7(1) 7(2) 7(3) 1(4) 7(5) 1(6) 1(7) 7(8) 1:(9) (10)(11)1-(12)7(13)

Given a text T of length n, the i-th is
alblalbjclalbfclalb|b|a]|$
T70) — T[i..n T[1..i) bla|b|clalb]clalb]bla|[$]|a
alb|clalblcla|b|bla|$|a|b
blcla|bflclalblbla|$|a|b]|a
® j-th cyclic rotation is concatenation of i-th suffix clalblclalololalslalolalo
and (i — 1)-th prefix alblclalololalslalolalolc
bfcla|b|b]Ja|$|albla|b|c|a
cla|bfblal$|lalblalblc|lalb
alblblal$]alblalblc|lal|b]|c
b(bla|$|lalblalbfjclalbfc]|a
blfal$|a|lblalblclalb|c|alb
al$|alblalblclalblclalb|b
$la|blalblclalblc|lalb|bfa

5/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Burrows-Wheeler Transform (2/2)

T = ababcabcabba$

7(1) 7(2) 7(3) 1(4) 7(5) 1(6) 1(7) 7(8) 1:(9) (10)(11)1-(12)7(13)

Given a text T of length n, the i-th is
alblalbjclalb|clalb|[bfa]|$
T(I) — T[In]T[1I) blalb|clalblc|lalblblal|$|a
albfclalblclalb|blal$|a]|b
) .)))) . bl|clalblclalblbla|$]albfa
® j-th cyclic rotation is concatenation of i-th suffix clalblclalololalslalolalo
and (i — 1)-th prefix alolclalololalslalolalole
b|l|c|la|b|bla|$]albla|bfc]|a
clalb|blal$]alblalb|lc|alb
Given a text T and a matrix containing all its cyclic)b blE) ¥ al)e b [E][a]|n]|e
. ; ; q b|bla|$|alblalb|lc|lalb|c|a
rotations in lexicographical order as columns, then
the of the text is the blajsjalblalblclalblclalb
last row of the matrix al¢lajblajblclaljblclalblb
$la|blalblclalblc|lalb|bfa

5/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Burrows-Wheeler Transform (2/2)

T = ababcabcabba$

7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 1:(2) 7(10) 7(7) (4) 1(8) 7(5)

Given a text T of length n, the i-th is
$(ajalJalalalb|b|blb|b|c|c
T(’):T[i..n]T[1..i) a|$|[b|bfb|blalalb|cfc|ala
blalalblc|c|$|bjalalalb]|b
alb|blajajalalc|$]|b|b|b]|c
® j-th cyclic rotation is concatenation of i-th suffix blalclslolololalalolclala
and (i — 1)-th prefix Tolalalolclalololalals o
aj|c|b|bjaJa|b|cla|$|b|a|b
blaflclal$|b]clalblalb|b]|a
Given a text T and a matrix containing all its cyclic clbja|ble|k|o)n)c|ble 8 &
rotations in lexicographical order as columns, then ajclbfclblalblblajalS]bla
the of the text is the blajblajalsjclajblblalclb
last row of the matrix bjbfafblblajajsfcfc]blala

5/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

7O = T[i.n] T[1..1)

® j-th cyclic rotation is concatenation of i-th suffix
and (i — 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic
rotations in lexicographical order as columns, then
the Burrows-Wheeler transform of the text is the
last row of the matrix

5/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

T = ababcabcabba$

T(13)7(12) (1) 7(9) 7(6) 7(8) 7(11) (2) 7(10) 7(7) 7(4) 1(8) 7(5)

$lajlalJalalalb|b|blb|b|c|c
al$|b|blb]blajlalblc|fc|ala
blalalb|c|c|$|blalala|b|b
alb|blalalalalc|$ib|b|b]c
blalc|$|blb]blajalb|c|fa]a
c(blalalb]clalblblala|$]|b
alc|b|blajalblclal$|bfalb
blalcla|$|b|lclalbla|b|b]|a
c(blalblalblalblc|ib|lalal|$
afc|blc|blalb|bfjalal[$|bfa
blfalblalJa|$]|c|lalb|lb|a|c]|b
b[b|a]b|bjaJa|$|c|c|bfa]a
alb|$|clc|blblalalalalb|b

Institute for Theoretical Computer Science, Algorithmics Il

CIT

First and Last Row

® two important rows in the matrix T = ababcabcabba$

(13)12) 7)) 1(9) 7(6) 7(3) 7(11) 7(2)7(10)7(7) 7(4) 7(8) 76)
® other rows are not needed at all ! LRSS A A AL L

F $lalajalala|lb|b|b|b]b|c]c

@ there is a special relation between the two rows als|blolblblalalblc|clala
0 later this lecture blala|b|c|c|$|blajalalblb
alblblalalala|c|$ib]|b|b]|cC

b[alc[s[b]b[blalalbc]a]s
® contains all characters or the text in sorted order cfpfajajbjclalblblajajsfb
alc|blblalalblclal$Iblalb

® is the BWT itself clblejbjajblalblciolalals
alc|blc|blalb|blala|$|b]a

blalblala|$|c|lalb|blalc]|b

blbla|b|b|lala|$|c|c|bla]a

L alb|l$|c|lc|b|blajajalalb|b

6/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a 0 580 5O S0 G) G 50 56

character at position i € [1, n] is F [$]alafajalalblblblblblcfc
als$|b|b|b|[blalalbfc|c|ala

rank(i) = |{j € [1,): T[] = T[]} blalalolelcisiblalalalolb
alblblalalala|c|[$|b]|b|b]|cC

blaflc|$|blb|b|alalb]c|a]a

® rank is number of same characters that occur clolalalolclalblolalals|o
before in the text alclololalalolclalslolalo
® mark ranks of characters w.r.t. text not BWT blaflc|la|s$|b|c|alblalb]|b]a
clblalblalblalb|c|bjalal$

alc|blc|blalb|bfalal[$|b]a

blalblala|$|c|a|b|bjalc|b

blbla|b|blJala|[$|[c|fc|b]a]a

L alb|$|clc|b|blalalalalb]|b

7/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a 0 580 5O S0 G) G 50 56

character at position i € [1, n] is Folslajafalalajblblbiblbjclc
al$|blb|b|blalalbfc|c|ala

rank(i) = |{j € [1.1]: T[] = T} T E P e b
alblblalalala|c|[$|b]|b|b]|cC

blalc|[$Ib]|b|b|lajalbjcla]a

® rank is number of same characters that occur clblalalblclalblblalals|b
before in the text alclb|[blalalb|c|[al$]|blalb
® mark ranks of characters w.r.t. text not BWT blalcla|$|blc|la|blalblb|a
clblalblalblalb|c|bjalal$

ajc|ib|c|bla|b|blala|$|b]a

blalblala|$|c|a|b|bjalc|b

T ababcabcabbat ololalololalalsiclclolala
rank 1 122133244551 L |a|b|$|c|c|bfblalalalalb|b

7/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a GG 5 G FE I) 76 7 g
. . . ’ F $a”aaaa“b|b|b b”b“c cl

har r ition i 1,n|i —1)-5 3 5 &
character at position i € [1, n] is a]éi;f{)lﬁ)ﬁ]);\);?);i;);]);é);:%Cza]fag)
rank(i) = |{j € [1,1]: T[] = T[j]}| blajajbjcfc]$|bjafajalblb
alblblalalala|c|[$|b]|b|b]|cC
. blalc|$|b]b|blalalblc]ala
a rank|s.numberofsamecharactersthatoccur clolalalolclalblolalals|o
before in the text alclololalalolclalslolalo
® mark ranks of characters w.r.t. text not BWT blalcla|$|blc|la|blalblb|a
clblalblalblalb|c|bjalal$
ajc|ib|c|bla|b|blala|$|b]a
blalblala|$|c|a|b|lblalc]|b
T ababcabcabbat N DENONODEENRE
rank 1 122133244551 L |a|b|$|c|c|bfblalalalalb|b

7/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Properties of the BWT: Rank of Characters

SKIT

Karlsruhe Institute of Technology

Definition: Rank

7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

Given a text T over an alphabet Sigma, the rank of a
character at position i € [1, n] is

rank(i) = [{j € [1,1]: Tl = TH]}

® rank is number of same characters that occur
before in the text

® mark ranks of characters w.r.t. text not BWT

T ababcabcabbat
rank 1 1 2 2 1 332 4455 1

7/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

F

$

Q

alplplplplpnlc

|
-2

VTR R R R RIS
e % e [T o [o [
a/bbaaaac$)a//b/bc
b"\ac$bbb/a/abc\aa
o [AT R [T
MDD ARNAELILE
YEIBEBNZBEIEE
c[[o\alb[a]b\a\/b\ c\b[alals
allclo]clolANeNeals]o]a
A= = o B e e
db;&; byb Y| INs he he o (6 [

Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a 0 580 5O S0 G) G 50 56

I Py [l |

character at position i € [1, n] is 3 T:J)g=%1E€%§%€£5£]%€%3)%€%}%2’)
rank(i) = |{j € [1,1]: TIi] = T[1}] glf; IV e EEHE

. b"\ac$bbb/a/abc\aa

® rank is number of same characters that occur BRI SARAE
before in the text DD ARUYACBINID
® mark ranks of characters w.r.t. text not BWT blalc[d[s% [k Rl%]a]n]n]a
c[[o\alb[a]b\a\/b\ c\b[alals

allclo]clolANeNeals]o]a

T ababcabcabbat glafolalofsf o]0 6]alclo
Bl oo [bybyq|ghs heheho e e

rank 1 122133244551 L |albls$lclclblblalalalalplp
YL VLIVIYVLYIDIY

7/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a 0 580 O SO G5) 58 50 56

: I [plp] [l |

character at position i € [1, n] is 3 T:J);=%1%€%§%€£5£]£4)%3)%€%}%2J
rank(i) = {j € [1,1: T{i] = T[}] g/fi IV AE Pean

. b‘f\ac$bbb/a/abc\aa

® rank is number of same characters that occur ARV SARAE
before in the text AP ARNYACBILIE
® mark ranks of characters w.r.t. text not BWT blalc[d[s]% [k Rl%]a]n]n]a
® order of ranks is the same in first and last row c[o{al/b]a]oWalbN c\ b]alals
allclo]clplANoNaals]o]a

T ababcabcabbat glalolalofsf o]0 6]alclo
b ofe [bybrg|ghs he hehb e @

rank 1 1221383244551 L |albls$lclclblblalalalalplp
Y YVLVLIVIYVLIYIDIY

7/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

LF-Mapping (1/2)

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want thlso 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

. ’ F $lalalalala|b|b|b|b|b]c]|c
® helps with pattern matching alslololololalalolclclala

® transform BWT back to T
blala|b|c|c|$|[blajlala|b]|b
P - albfblajalala|c|$|b|b|b]|cC
Definition: LF-mapping Tl o o ala o=z
Given a text T of length n and its suffix array SA, ciblaflalbfcfalbfblalals]|b
then the LF-mapping is a permutation of [1, n], such alc|blblalalb|clal$|bl|alb
that blalc|la|$|b|c|alblalb|b]a
LF(i)=j < SA[j] = SA[i] — 1 clolalb|alb|albfc|[b]|alals
alc|b|c|b|a|b|blaja|$|b|a
® similar to definition of BWT blajblajajsjclalblblajc}b
. blblalb|blala|$]|]c|clib]ala
® requires SA or explicitly saving LF-mapping L [alolsl<l<lololalalalalolo

8/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

LF-Mapping (1/2)

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want thlso 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

. ’ F $lalalalala|b|b|b|b|b]c]|c
® helps with pattern matching . # 1ol 6= lalslclclala

® transform BWT back to T
blplalo[c]c]s|[b[alalalb]b
P - a Ib blajalafla|c|$|b|b|bfc
Definition: LF-mapping N SEEONNDEDERE
Given a text T of length n and its suffix array SA, cfpblalalbfcfalb|blalals]|b
then the LF-mapping is a permutation of [1, n], such alc|blblalalb|clal$|blalb
that bfalcla|s$|b|c|alblalb|b]a
LF(i)=j < SA[j] = SA[i] — 1 cffolalblalb|albfc|b|alals
a[c[o]c]blalb][b]a]als]b]a
® similar to definition of BWT dlaJoafals|clalb]b]alc]b
. .. \ . d blalb|b|lala|$]clc]|blala
® requires SA or explicitly saving LF-mapping L [2lolsl<lclololalalalalolo

8/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

LF-Mapping (1/2) ﬂ(IT

Karlsruhe Institute of Technology

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want thlso 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

. ’ F $lalalalala|b|b|b|b|b]c]|c
® helps with pattern matching . # 1ol 6l lalolclclala

® transform BWT back to T
b|p[a]b|c|d[s]b|afa]ab|b
P - a Ib blajalalalc|$|b|b|bfc
Definition: LF-mapping SRR EDERE
Given a text T of length n and its suffix array SA, cfolalalp]clalb[bfalals]b
then the LF-mapping is a permutation of [1, n], such alc|blbfalalb|clal$|bl|alb
that bJalc[#[s]p[c]alb]alb]b]a
LF(i)=j < SA[j] = SA[i] — 1 cffolalblalb|alblc|[b|alals
a| clolalb|blalals|b]a
® similar to definition of BWT dlalplalals|clalb]o]alc]b
. d bfalb|b|lala|$]clic]|blala
® requires SA or explicitly saving LF-mapping L [2lolsl<lclololalalalalolo

8/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

LF-Mapping (1/2) ﬂ(IT

Karlsruhe Institute of Technology

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want th|S° 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

= hel . . F $lalalalala|b|b|b|b]b|c]c
elps with pattern matching ﬁﬁ Tolo s Falalolclclala

® transform BWT back to T
b\plafo|c|d[s|p][a]ala]b]b
P - a Ib blajalalalc|$|b|b|bfc
Definition: LF-mapping e [<[s[o/ o]0 ala]b]c o]z
Given a text T of length n and its suffix array SA, cfblalalfclalblblalals]o
then the LF-mapping is a permutation of [1, n], such a * blbfalalb|clal[$|blalb
that bla[c[#[s]p[c]alb]alb]b]a
LF(i)=j < SA[j] = SA[i] — 1 cffo\lalblalb|albfc|[b]alals
a| clolalb|blalals|b]a
® similar to definition of BWT dlalllalals|clalb]o]alc]o
n .. . X d b \a blblala|$|c|c|b]a]a
® requires SA or explicitly saving LF-mapping L [alolslclclololalalalzlolo

8/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

LF-Mapping (1/2) ﬂ(IT

Karlsruhe Institute of Technology

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want th|S° 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

a hel ith patt tchi Folslajefalalalblblblblbjclc
elps with pattern matching

® transform BWT back to T %# bibibibfalalblc]c Vi

b\p[a]b|c|d[s]b|alalafb]b

. alfolvlalalalalc]s]b[f]o]c

Definition: LF-mapping DOEBECOnDBaCanE

Given a text T of length n and its suffix array SA, cfblalalfclalblb}alals]o

then the LF-mapping is a permutation of [1, n], such alt]|b[pfalalb|c|A]s][b]a]b

that bld[c|#]s|b[c]afp]alb]b]a

LF(i)=j < SA[j] = SA[i] — 1 cffo\lalblalb|alb|c|[b|alals

a| clola[f]b]alals]b]a

® similar to definition of BWT dlafblalalgfclalb]o]alc]b

n .. . X db\abbaaﬁ;ccbaa

® requires SA or explicitly saving LF-mapping L [2lolsl<lclololalalalalolo

8/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

LF-Mapping (1/2) ﬂ(IT

Karlsruhe Institute of Technology

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want th|S° 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

a hel ith patt tchi Folslajefajalalblblolblofclc
elps with pattern maitching %ﬁ bk bk bk b5(a F c‘ (ya/a

® transform BWT back to T
B BMAAT VA4 AL
0 aIbbaaaac$//bc
Definition: LF-mapping WA NN AN
Given a text T of length n and its suffix array SA, <lvl=12 AN [N Va]R 6] b
then the LF-mapping is a permutation of [1, n], such alt|b[ofa\a\pWAVA s h]&]p
that N EVRF BN A IBEEIE
LF(i)=j < SA[j] = SA[] —1 c[[o\ a }/b[a] b\fa\JON N b [a a\ s
a| clo]A alsiola
® similar to definition of BWT ;’ Z f Z/Z Zfa/ i\‘)\ B\Z \; \:

C NC

® requires SA or explicitly saving LF-mapping L [2lolsl<lclololalalalalblb

8/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

LF-Mapping (2/2)

Definition: C-Array and Rank-Function

Given a text T of length n over an alphabet ¥,
a€X,and i€ [1,n]then

Cla] =i e [1,n]: T[] < af

and
rank, (i) = [{j € [1,1]: T[j] = o}|

® C contains total number of smaller characters
® rank, contains number of a’s in prefix T[1..i]
® rank, can be computed in O(1) time [FMO0O]

9/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

SKIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il

KIT

LF-Mapping (2/2)

T ababcabcabbay

Given a text T of length n over an alphabet ¥, rank 1 122 133244551

a € X,and i€ [1,n] then
® rank now on BWT

Cla] =i [1,n]: T[i] < af ® Cis exclusive prefix sum over histogram

and
rank, (1) = |{j € [1,1]: T[j] = a}|

@ C contains total number of smaller characters
® rank, contains number of a’s in prefix T[1..i]
® rank, can be computed in O(1) time [FMO0O]

9/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Ui

LF-Mapping (2/2)

Definition: C-Array and Rank-Function T ababcabcabbat$

Given a text T of length n over an alphabet ¥, rank 1 122 133244551

a € X,and i€ [1,n] then
® rank now on BWT

Cle] =i e[t,n]: T[i] <o ® Cis exclusive prefix sum over histogram £ -J

and

Definition: LF-Mapping (alt.)

Given a BWT, its C-array, and its rank-Function,
then

rank. (i) = [{j € [1,i]: T[j] = a}|
® C contains total number of smaller characters

® rank, contains number of a’s in prefix T[1..i] LF(i) = C[BWTIi]] + rankgyry; (i)
® rank, can be computed in O(1) time [FMO0O]

9/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Karlsruhe Institute of Technology

Reversing the BWT (1/2) A“(IT

® characters (w.r.t. text) preserve order in L and F
® [F-mapping returns previous character in text

10/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Karlsruhe Institute of Technology

Reversing the BWT (1/2) A“(IT

® characters (w.r.t. text) preserve order in L and F
® [F-mapping returns previous character in text

i J
Fla_a B]
TR @]

10/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (1/2)

® characters (w.r.t. text) preserve order in L and F
® [F-mapping returns previous character in text

10/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (1/2)

® characters (w.r.t. text) preserve order in L and F

® [F-mapping returns previous character in text

10/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

F

LF

KIT

Karlsruhe Institute of Technology

T = ababcabcabba$

$lalalalalal|b|blb]b|blc]|c
al$|b|b|b|b|lala|blc|c|ala
blala|b|c|c|$|[blalala|b]|b
alb|blalalalalc|$|blb]|b]|cC
blaflc|$|b|b|b|aJa|lb]c|a]a
ciblalalb|c|lalblblalal$]|b
al|c|blblalalb|cla|$Iblalb
blalc|a|$|b|c|albla|b]|b]a
clblalbla|b|lalblc]blalal$
ajclib|c|bla|b|blala|$|b]a
blalblala|$|c|la|lb|b|la]c]|b
blbla]b|b|lala|[$]c|c]|b|a]a
alb|$|clic|b|blalalalalb|b
2 7 112138 9 3 4 5 6 1011

Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (1/2) ﬂIT

® characters (w.r.t. text) preserve order in L and F T = ababcabcabba$

® [F-mapping returns previous character in text F |#]alajajajajbiblblblb)c]c
A [ARNN N (R [B[[HA-

o\ T2 % I I o e [=WAVe o
albbaaaac$}{){bc
Lacﬁsbbbaabcaa
b= [= AT X P2 TR TE o
axbbaa¢%¢$&&b

3 EVEFEN) % ABEIEIE
clflb\lalb|a]|b\fa\yb\ c\ b | a\l a\|l $
a’c cb/ al$lbla
b’a aaS;/ é\r}\k\acb
IDADIZIEINEa AL

L |(alb|$|lc]c|(b|blajalalalb|b
LF 2 7 112138 9 3 4 5 6 1011

10/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Karlsruhe Institute of Technology

Reversing the BWT (2/2) A“(IT

® characters (w.r.t. text) preserve order in L and F

123456 7 89 0111213
® [F-mapping returns previous character in text L [alb]s]c]c|b|blalalalalb|b
LF |2]7]1|12|13|8]|9|3|4]|5]6|10[11

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® characters (w.r.t. text) preserve order in L and F

123456 7 89 0111213
® [F-mapping returns previous character in text L [alb]s]c]c|b|blalalalalb|b
LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11

® T[n] = $and T() in first row

® apply LF-mapping on result to obtain any
character

T[n — i] = LILF(LF(...(LF(1))...))]

i—1 times

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (2/2) ﬂ(IT

® characters (w.r.t. text) preserve order in L and F

123456 7 89 0111213
® [F-mapping returns previous character in text L [alb]s]c]c|b|b]ala alb|b
LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11

® T[n] = $and T() in first row

® apply LF-mapping on result to obtain any
character

® T[13] =$and k = 1

T[n — i] = LILF(LF(...(LF(1))...))]

i—1 times

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® characters (w.r.t. text) preserve order in L and F

123 456 7 8 9 0111213
® [F-mapping returns previous character in text L [alb]s]c]c|b|blalalalalb|b
LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11
® T[n] = $and T in first row » T[13] = $and k = 1
® apply LF-mapping on result to obtain any » T[12] = L[] =aand k = LF(1) = 2
character
Tln—i] = L[LF(LF(...(LF(1))...))]
N———

i—1 times

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Reversing the BWT (2/2)
® characters (w.r.t. text) preserve order in L and F T T A T
® [F-mapping returns previous character in text L lalb]s$]clc|b]|blalalalalb]|b

LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11
® T[n] = $and T in first row » T[13] = $and k = 1
® apply LF-mapping on result to obtain any » T[12] = L[] =aand k = LF(1) = 2
character
® T[11]=L[2]=band k = LF(2) =7
Tln—i] = L[LF(LF(...(LF(1))...))]
N ——’
i—1 times

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® characters (w.r.t. text) preserve order in L and F

123456 7 89 0111213
® [F-mapping returns previous character in text L lalb]s$]clc|b]|blalalalalb]|b
LF |2]7]1|12|13|8]|9|3|4]|5]|6[10[11
® T[n] = $and T in first row » T[13] = $and k = 1
® apply LF-mapping on result to obtain any » T[12] = L[] =aand k = LF(1) = 2
character
® T[11]=L[2]=band k = LF(2) =7
Tln—i] = L[LF(LF(...(LF(1))...))] ® T[10] = L[7] =band k = LF(7) =9
N ——’
i—1 times

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Reversing the BWT (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® characters (w.r.t. text) preserve order in L and F

123 456 7 8 9 0111213
® [F-mapping returns previous character in text L lalb]s$]clc|b]|blalalalalb]|b
LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11
® T[n] = $and T in first row » T[13] = $and k = 1
a aﬁply LtF-mapping on result to obtain any » T[12] = L[] =aand k = LF(1) = 2
character
® T[11]=L[2]=band k = LF(2) =7
Tln—i] = L[LF(LF(...(LF(1))...))] ® T[10] = L[7] =band k = LF(7) =9
i—1 times a T[g] = L[g] —aand k = LF(Q) =4

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

T[9] = L[9) =aand k = LF(9) = 4
T[9] = L[4] = cand k = LF(4) = 12

i—1 times

Reversing the BWT (2/2)
® characters (w.r.t. text) preserve order in L and F T T A T
® [F-mapping returns previous character in text L lalb]s$]clc|b]|blalalalalb]|b

LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11
® T[n] = $and T in first row » T[13] = $and k = 1
® apply LF-mapping on result to obtain any » T[12] = L[] =aand k = LF(1) = 2
character
® T[11]=L[2]=band k = LF(2) =7
Tln—i] = L[LF(LF(...(LF(1))...))] ® T[10] = L[7] =band k = LF(7) =9
a
a

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Reversing the BWT (2/2)
® characters (w.r.t. text) preserve order in L and F T T A T
® [F-mapping returns previous character in text L lalb]s$]clc|b]|blalalalalb]|b
LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11
® T[n] = $and T in first row » T[13] = $and k = 1
® apply LF-mapping on result to obtain any T[12] = L[1] = aand k = LF(1) = 2
character
T[11]=L[2] =band k = LF(2) =7
Tln—i] = L[LF(LF(...(LF(1))...))] T[10] = L[7] =band k = LF(7) =9
N ——’

T[9] = L[9) =aand k = LF(9) = 4
T[9] = L[4] = cand k = LF(4) = 12

i—1 times

11/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Properties of the BWT: Runs

@ BWT is reversible
® can be used for lossless compression

Definition: Run (simplified)
Given a text T of length n, we call its substring T7[i..j]
arun, if

® T[k] = T[/] forall k, £ € [i,j] and

® T[i—1] # T[] and T[j + 1] # T[j]
0 (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is

not important for this Iecture@)

12/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

L

Ui

Karlsruhe Institute of Technology

123456789 06111213
[afo]s[c]c[bfo]aa]afafo]o]

Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Properties of the BWT: Runs Karlsruhe Institute of Technology
- BT Bl 1234567829 0111213
® can be used for lossless compression L [a]b]s]c]c]o]o]a]alala]b]b]

Definition: Run (simplified)
Given a text T of length n, we call its substring T7[i..j]
arun, if

® T[k] = T[/] forall k, £ € [i,j] and

® T[i—1] # T[] and T[j + 1] # T[j]
0 (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is

not important for this Iectureé@)

® BWT contains lots of runs
® same context is often grouped together £

12/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Compressing the BWT: Run-Length Compression

Definition: Run-Length Encoding

Given a text T, represent each run T[i..i + /) as 123456 7 8 9 0111213
tuple , BWT [a[o[s[c[c[o]o]alal2]a]o]o]
(71,0

®(a1)
= (b,1)
= (s,1)
® (c,2)
® (b,2)
® (a,4)
® (b,2)

13/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

Given a text T over an alphabet ¥ = [1, 0], the
MTF(T) of the text is computed as follows

® start with a list X = X[1],X[2],..., X[o]

® scan text from left to right, for character T[i]
® append position of T[] in X to MTF(T) and
® move T|[i] to front of X

® MTF encoding can easily be reverted

® consists of many small numbers

® runs are preserved

@ use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet © = [1, o], the L2242 @7y ydliEis
MTF(T) of the text is computed as follows BWT [a[b[s|c[c[b[b[afaala[b]b]

start with a list X = X[1], X[2], ..., X[o]

scan text from left to right, for character T[i]

® append position of T[] in X to MTF(T) and
® move T|[i] to front of X

MTF encoding can easily be reverted
consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet © = [1, o], the L2242 @7y ydliEis
MTF(T) of the text is computed as follows BWT [a[b[s|c[c[b[b[afaala[b]b]
® start with a list X = X[1], £[2],. .., X[0] ® X=3ab,c
® scan text from left to right, for character T[i]

® append position of T[] in X to MTF(T) and
® move T|[i] to front of X

MTF encoding can easily be reverted
consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet & = [1, o], the 1234567809 01l1213
MTF(T) of the text is computed as follows BWT‘a|b|$|c | c|b|b|a|a|a|a|b|b‘
® start with a list X = X[1], X[2],..., X[0] ® X =%,a,b,c
® scan text from left to right, for character T[i] ® MTF=2and X =a,$,b,c

® append position of T[] in X to MTF(T) and
® move T|[i] to front of X

MTF encoding can easily be reverted
consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet © = [1, o], the L2242 @7y ydliEis

MTF(T) of the text is computed as follows BWT [a]b[s][c[c][b]bafafala[b]b]

® start with a list X = X[1],X[2],..., X[o] ® X=3ab,c
® scan text from left to right, for character T[i] ® MTF=2and X = a, $,b, c

® append ppsition of T[i]in X to MTF(T) and ® MTF=23and X = b.a.§.c

® move T|[i] to front of X T
® MTF encoding can easily be reverted
& consists of many small numbers
® runs are preserved
@ use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet © = [1, o], the L2242 @7y ydliEis

MTF(T) of the text is computed as follows BWT [a]b[s][c[c][b]bafafala[b]b]

® start with a list X = X[1],X[2],..., X[o] ® X=3ab,c
® scan text from left to right, for character T[i] ® MTF=2and X = a, $,b, c

® append ppsition of T[i]in X to MTF(T) and ® MTF=23and X = b.a.§.c

® move T|[i] to front of X T

@ MTF =233 and X =$,b,a,c

® MTF encoding can easily be reverted
& consists of many small numbers
® runs are preserved
@ use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet & = [1, o], the 1234567809 01l1213
MTF(T) of the text is computed as follows BWT [a[b]s[c]c[b[b]afafa]afb]b]
® start with a list X = X[1], X[2],..., X[0] ® X =%,a,b,c

® scan text from left to right, for character T[i]
® append position of T[] in X to MTF(T) and

@& MTF =2and X = a, $,b, c

[
® move T|[i] to front of X

[

[

MTF =23 and X =b,a, $,c
MTF =233 and X = $,b,a,c

MTF encoding can easily be reverted e = 2YY2 a0 = 6t b

consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet & = [1, o], the 1234567809 01l1213
MTF(T) of the text is computed as follows BWT [a[b]s[c]c[b[b]afafa]afb]b]
® start with a list X = X[1], X[2],..., X[0] ® X =%,a,b,c

® scan text from left to right, for character T[i]
® append position of T[i] in X to MTF(T) and
® move T|[i] to front of X

MTF =2and X = a, $,b,c

MTF =23 and X =b,a, $,c
MTF =233 and X = $,b,a,c
MTF =2334and X =c,$,b,a
MTF =23341and X =c,$,b,a

MTF encoding can easily be reverted

consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet & = [1, o], the 1234567809 01l1213
MTF(T) of the text is computed as follows BWT [a[b]s[c]c[b[b]afafa]afb]b]
® start with a list X = X[1], X[2],..., X[0] ® X =%,a,b,c

® scan text from left to right, for character T[i]
® append position of T[i] in X to MTF(T) and
® move T|[i] to front of X

MTF =2and X = a, $,b,c

MTF =23 and X =b,a, $,c

MTF =233 and X = $,b,a,c
MTF =2334and X =c,$,b,a
MTF =23341and X =c,$,b,a
MTF =233411and X =c, $,b,a

MTF encoding can easily be reverted

consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet & = [1, o], the 1234567809 01l1213
MTF(T) of the text is computed as follows BWT [a[b]s[c]c[b[b]afafa]afb]b]
® start with a list X = X[1], X[2],..., X[0] ® X =%,a,b,c

® scan text from left to right, for character T[i]
® append position of T[i] in X to MTF(T) and
® move T|[i] to front of X

MTF =2and X = a, $,b,c

MTF =23 and X =b,a, $,c

MTF =233 and X = $,b,a,c
MTF =2334and X =c,$,b,a
MTF =23341and X =c,$,b,a
MTF =233411and X =c, $,b,a

MTF encoding can easily be reverted
consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Compressing the BWT: Move-to-Front

Given a text T over an alphabet ¥ = [1, 0], the
MTF(T) of the text is computed as follows

® start with a list X = X[1],X[2],..., X[o]
® scan text from left to right, for character T[i]

® append position of T[i] in X to MTF(T) and
® move T|[i] to front of X

MTF encoding can easily be reverted
consists of many small numbers
runs are preserved

use Huffman on encoding

14/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

T = ababcabcabba$

1234567 89 0111213
BWT [a[b]s[c]c]b[b[afafala]b]b]

X =4$,a,b,c

MTF =2and X = a, $,b,c

MTF =23 and X =b,a, $,c

MTF =233 and X = $,b,a,c
MTF =2334and X =c,$,b,a
MTF =23341and X =c,$,b,a
MTF =233411and X =c, $,b,a
MTF =23341131411121

Institute for Theoretical Computer Science, Algorithmics Il

KIT

Pattern Matching using the BWT
® interval for a s [Cla — 1], Ca + 1]]
Given a text T of length n over an alphabet ¥, a find sub-interval using rank,

a € X,and i€ [1,n] then
Cla] = i€ [1,n]: T[] < q ® example on the board £ -

and
rank, (i) = |{j € [1,1]: T[j] = a}|

a find interval of occurrences in SA using BWT

® SAis divided into intervals based on first
character of suffix @ as seen during SAIS

@ text from BWT is backwards
® search pattern backwards

15/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Backwards Search in the BWT ﬂ(IT

Karlsruhe Institute of Technology

Function BackwardsSearch(P[1..n], C, rank): ® no access fotext or SArequired
1 s=1,e=n ® no binary search
2 fori=m,...,1do ® existential queries are easy
3 = C[P["]] + rankeg)(s — 1) +1 ® counting queries are easy
4 e = C[P[i]] + rankpj;(e)
5 If s> ethen @ reporting queries require additional information
6 | return () ® example on the board
7

return [s, €]

16/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Sampling the Suffix Array

® reporting queries require SA
& storing whole SA requires too much space
@ better: sample every s-th SA position in SA’

17/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il

KIT

Sampling the Suffix Array

® reporting queries require SA
& storing whole SA requires too much space

better: sample every s-th SA position in SA’

how to find sampled position?

mark sampled positions in bit vector of size n
if match occurs check if position is sampled
otherwise find sample using LF

if SA[i] = j then SA[LF(i)] =/ —1

17/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Sampling the Suffix Array
® reporting queries require SA ® rank; (i) in bit vector is number of sample
® storing whole SA requires too much space ® SA'[rank (i)] is sampled value
® better: sample every s-th SA position in SA’ ® SA'[rank; ()] — #steps till sample found

is correct SA value
how to find sampled position?
mark sampled positions in bit vector of size n
if match occurs check if position is sampled
otherwise find sample using LF
if SA[i] = j then SA[LF(i)] =/ —1

17/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Sampling the Suffix Array

reporting queries require SA

& storing whole SA requires too much space

17/24

better: sample every s-th SA position in SA’

how to find sampled position?

mark sampled positions in bit vector of size n
if match occurs check if position is sampled
otherwise find sample using LF

if SA[i] = j then SA[LF(i)] =/ —1

2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

® ranki (i) in bit vector is number of sample
® SA'[rank; (i)] is sampled value

® SA'[rank; (/)] — #steps till sample found
is correct SA value

a finding a sample requires O(S - tank) time

Institute for Theoretical Computer Science, Algorithmics Il

Efficient Bit Vectors in Practice (1/3) @

std: :vector<char/int/...>

® easy access
® very big: 1,4, ... bytes per bit

18/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il

CIT

Efficient Bit Vectors in Practice (1/3) éﬂ%

std: :vector<char/int/...>

® easy access
® very big: 1,4, ... bytes per bit

std: :vector<bool>

® bit vector in C++ (1 bit per byte)
® easy access
® |ayout depending on implementation

18/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Ui

Efficient Bit Vectors in Practice (1/3) é@
std::vector<char/int/...>
® easy access ® requires 8 bytes per bit(?)
® very big: 1,4, ... bytes per bit & store 64 bits in 8 bytes

® how to access bits
std: :vector<bool>

® bit vector in C++ (1 bit per byte)
® easy access
® |ayout depending on implementation

18/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Ui

Efficient Bit Vectors in Practice (1/3) éﬂ%
® easy access @ requires 8 bytes per bit(?)
® very big: 1,4, ... bytes per bit @ store 64 bits in 8 bytes
@ how to access bits
® bit vector in C++ (1 bit per byte) m /64 is position in 64-bit word
® easy access ® /%64 is position in word

® |ayout depending on implementation

18/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Efficient Bit Vectors in Practice (1/3) @
® easy access @ requires 8 bytes per bit(?)
® very big: 1,4, ... bytes per bit @ store 64 bits in 8 bytes
® how to access bits
® bit vector in C++ (1 bit per byte) ® j/64 is position in 64-bit word
® easy access ® /%64 is position in word

® |ayout depending on implementation

0 1 2 3 4 5 6 7 8 9
| 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits |

y?|2|l|f|3|i|3\fﬁﬁyaf|f 0|

18/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Efficient Bit Vectors in Practice (2/3) @ ﬂ(IT

// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit

uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

19/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Efficient Bit Vectors in Practice (2/3) @

// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

—

shift bits right

0 1 2 3 4 5 .. 62 63
fafifefafelafe

19/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Efficient Bit Vectors in Practice (2/3) @

// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits
0 1 2 38 4 5 ... 62 63 0 1 2 3 4 5 ... 62 63
afafifef1fel.f1fe] =60 (efefefejofo].. 1[0

19/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Efficient Bit Vectors in Practice (2/3) @

// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits logical and 1
0 1 2 38 4 5 ... 62 63 0 1 2 3 4 5 ... 62 63
afafifoefrfelf1fe] o [ofefefofofel..1]0

ang 1

19/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Efficient Bit Vectors in Practice (3/3)@%

(block >> (63-(i%64))) & 1ULL; (block >> (i%64)) & 1ULL;

& fill bit vector from left to right a fill bit vector right to left
0 1 2 3 4 5 ... 62 63 63 62 ... 5 4 3 2 1 0
(rfafafoefafef..[2]e] (ofuf.feofafofr]afa]
ofefofofofolf..[1]e] ofeoffafrfefef1fe]

20/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Efficient Bit Vectors in Practice (3/3) éf% "iTeamony

(block >> ((i%64))) & 1ULL,; (block >> (i%64)) & 1ULL;

& fill bit vector from left to right a fill bit vector right to left
0 1 2 3 4 5 ... 62 63 63 62 ... 5 4 3 2 1 0
(rfafafoefafef..[2]e] (ofuf.feofafofr]afa]
ofefofofofolf..[1]e] ofeoffafrfefef1fe]

20/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Efficient Bit Vectors in Practice (3/3) @

(block >> ((i%64))) & 1ULL;
& fill bit vector from left to right
0 1 2 3 4 5 ... 62 63
(rfafafoefafef..[2]e]
ofefofofofolf..[1]e]

® assembler code: mov ecx, edi
not ecx

shr rsi, cl
mov eax, esi

and eax, 1

20/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

SKIT

e of Technology

(block >> (i%64)) & 1ULL;
a fill bit vector right to left
63 62 ... 5 4 3 2 1 0

(ofaffofsfefafz]1]

(ofof.[2fs]efefz]e]

Institute for Theoretical Computer Science, Algorithmics Il

Efficient Bit Vectors in Practice (3/3) @

(block >> ((i%64))) & 1ULL;
& fill bit vector from left to right
0 1 2 3 4 5 ... 62 63
(rfafafoefafef..[2]e]
ofefofofofolf..[1]e]

® assembler code: mov ecx, edi
not ecx

shr rsi, cl
mov eax, esi

and eax, 1

20/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

SKIT

e of Technology

(block >> (i%64)) & 1ULL;

a fill bit vector right to left
63 62 ... 5 4 3 2 1 0
(ofuf.feofafofr]afa]

(ofof.[2fs]efefz]e]

® assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi

and eax, 1

Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

of as before i
position of j-th

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

rank,, (/) # of as before i
position of j-th

ranko(5)

©|w
RN
R o
oo
[N
o |
o |©

super-block } ; , v;#rc;f ?35\/

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Rank Queries in Bit Vectors (1/2)

rank,, (/) # of as before i
position of j-th

ranko(5)

of Os w.r.t.
super-block

o
-
RN RIS
©|w
o
©|lo
NN
© |
© |©

block ‘ w ‘ —
; # of Os
super-block } @

Institute for Theoretical Computer Science, Algorithmics Il

21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

Rank Queries in Bit Vectors (1/2) ﬂ(IT

Karlsruhe Institute of Technology

rank,, (/) # of as before i
position of j-th

ranko(5)
! 2 il
‘ ‘ #of Os w.rt.
0 1 2 3 4 5 6 7 8 9 superblook
©/1|{1/06|1|1(06|1|0|0
block I t f f
. X) # of Os
super-block - @
21/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

Institute for Theoretical Computer Science, Algorithmics Il

Rank Queries in Bit Vectors (2/2)

& for a bit vector of size n
® blocks of size s = | 2" |

® super blocks of size s' = s> = O(Ig® n)

22/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il

Rank Queries in Bit Vectors (2/2)

22/24

® blocks of size s = | '&”

for a bit vector of size n

2
super blocks of size s' = s> = O(lg” n)

for all | 7] super blocks, store number of 0s
from beginning of bit vector to end of
super-block

n/s"-lgn= O(g%) = o(n) bits of space

2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

Institute for Theoretical Computer Science, Algorithmics Il

Rank Queries in Bit Vectors (2/2)

22/24

® blocks of size s = | '&”

for a bit vector of size n

2
super blocks of size s' = s> = O(lg” n)

for all | 7] super blocks, store number of 0s
from beginning of bit vector to end of
super-block

n/s"-lgn= O(g%) = o(n) bits of space

2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

® for all | 7] blocks, store number of Os from
beginning of super block to end of block

®n/s-lgs = O(%) = o(n) bits of space

Institute for Theoretical Computer Science, Algorithmics Il

22/24 2022-01-05

Rank Queries in Bit Vectors (2/2)

a for a bit vector of size n

® blocks of size s = LIng

® super blocks of size s' = s> = O(Ig® n)

® for all | 7| super blocks, store number of Os
from beginning of bit vector to end of
super-block

®n/s'-lgn= O(s5) = o(n) bits of space

Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

® for all | 7] blocks, store number of Os from
beginning of super block to end of block

®n/s-lgs = O(%) = o(n) bits of space

& for all length-s bit vectors, for every position i
store number of 0s up to /

2% s lgs = O(v/nlgnlglgn) = o(n) bits of
space

Institute for Theoretical Computer Science, Algorithmics Il

22/24 2022-01-05

Rank Queries in Bit Vectors (2/2)

a for a bit vector of size n

® blocks of size s = LIng

® super blocks of size s' = s> = O(Ig® n)

® for all | 7| super blocks, store number of Os
from beginning of bit vector to end of
super-block

®n/s'-lgn= O(s5) = o(n) bits of space

Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

for all | 7 | blocks, store number of Os from
beginning of super block to end of block

n/s-lgs = O(%) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to /

2% .s.lgs= O(v/nlgnlglg n) = o(n) bits of
space

® query in O(1) time

ranko(i) = i — rank (i)

Institute for Theoretical Computer Science, Algorithmics Il

The FM-Index (First Look) [FM0O] IT

Building Blocks of FM-Index Space Requirements

® wavelet tree on BWT providing rank-function ® wavelet tree: nflgo|(1 + o(1)) bits

® wavelet trees are topic of next lecture! w C-array: oflg n) bits @ n(1 -+ o(1)) bits if

a C-array o> lgin

@ sampled suffix array with sample rate s = sampled suffix array: 2[lg n] bits

® bit vector marking sampled suffix array positions ® bit vector: n(1 + o(1)) bits
Lemma: FM-Index Space Requirements ® space and time bounds can be achieved with
Given a text T of length n over an alphabet of size o, s=lg,n

the FM-index requires O(nlg o) bits of space

23/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

SKIT

Conclusion and Outlook

This Lecture Linear Time Construction

@ Burrows-Wheeler transform

ST SA
Lz | LCP BWT

® introduction to FM-index

24/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Conclusion and Outlook

This Lecture Linear Time Construction

@ Burrows-Wheeler transform
) . . ST SA
® introduction to FM-index
a efficient bit vectors
. . Lz LCP BWT
® rank queries on bit vectors

24/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

Ui

Conclusion and Outlook

This Lecture Linear Time Construction

@ Burrows-Wheeler transform
) . . ST SA
® introduction to FM-index
a efficient bit vectors
. . Lz LCP BWT
® rank queries on bit vectors

Next Lecture

® wavelet trees
® more on FM-index

24/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

KIT

Bibliography |

[BW94] Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Technical report. 1994.

[FM00] Paolo Ferragina and Giovanni Manzini. “Opportunistic Data Structures with Applications”. In: FOCS.
IEEE Computer Society, 2000, pages 390-398. DOI: 10.1109/SFCS.2000.892127.

[KK19] Dominik Kempa and Tomasz Kociumaka. “String Synchronizing Sets: Sublinear-Time BWT
Construction and Optimal LCE Data Structure”. In: STOC. ACM, 2019, pages 756—767.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: |[EEE
Trans. Inf. Theory 23.3 (1977), pages 337-343. DOI: 10.1109/TIT.1977.1055714.

[ZL78] Jacob Ziv and Abraham Lempel. “Compression of Individual Sequences via Variable-Rate Coding”.
In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530—-536. DOI: 10.1109/TIT.1978.1055934.

25/24 2022-01-05 Florian Kurpicz | Text Indexing | 05 Burrows-Wheeler Transform Institute for Theoretical Computer Science, Algorithmics Il

https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Appendix

