Advanced Data Structures

Lecture 03: Succinct Planar Graphs

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-04-29-11:23

Recap: Succinct Trees

LOUDS

ab ch id ejkfg
10111100110011001100000

Recap: Succinct Trees

LOUDS

ab ch id ejkfg

10111100110011001100000

BP

$$
\begin{aligned}
& \text { ab cd ef g h ij k } \\
& (()(()(()()))()(()()))
\end{aligned}
$$

Recap: Succinct Trees

LOUDS

ab ch id ejkfg
10111100110011001100000

BP

$$
\begin{aligned}
& \text { ab cd ef g h ij k } \\
& (()(()(()()))()(()()))
\end{aligned}
$$

DFUDS

$$
\begin{aligned}
& \text { a bc de fghi jk } \\
& ((()())(())(())))(()))
\end{aligned}
$$

Examples: Making DFUDS Fully-Functional

a bc de fghi jk
((()())(())(())))(()))

- degree of p : select")" (rank")" $(p)+1)-p$

- explanation on the board

Examples: Making DFUDS Fully-Functional

a bc de fghi jk
((()())(())(())))(()))

- degree of p : select")" (rank")" $(p)+1)-p$
- i-th child of p :
findclose(select")" (rank")" $(p)+1)-i)+1$

- explanation on the board $?$

Examples: Making DFUDS Fully-Functional

a bc de fghi jk

((()())(())(())))(()))

- degree of p : select")" (rank")" $(p)+1)-p$
- i-th child of p :
findclose(select")" $\left(\right.$ rank" $\left.\left.\left.^{\prime \prime}\right)(p)+1\right)-i\right)+1$
- parent of p :
select")" (rank")" (findopen $(p-1)))+1$

- explanation on the board

Examples: Making DFUDS Fully-Functional

```
a bc de fghi jk
(((())(())(())))(()))
```

- degree of p : select")" (rank")" $(p)+1)-p$
- i-th child of p :
findclose(select")" (rank")" $(p)+1)-i)+1$
- parent of p :
select")" (rank")" (findopen $(p-1)))+1$
- subtree size of p :
(findclose $($ enclose $(p))-p) / 2+1$

- explanation on the board

Planar Graphs (1/2)

Definition: Planar Graph

A graph $G=(V, E)$ is planar, if it

- can be drawn on the plane such that
- no edges cross each other
- drawing (planar) embedding of the graph
- not unique
a graph is planar if it has no minor \qquad
- $K_{3,3}$
- K_{5}

Planar Graphs (2/2)

- embedding is defined by order of neighbors
- this defines faces
- must specify outer face

Now Consider Only

- connected planar graphs with embedding,
- multi-edges, and
- self-loops (i) appear twice in list of edges

Dual Graph of Planar Graph

Definition: Dual Graph

Given an embedding of a planar graph G, the dual graph G^{*} of G has

- one node for each face of G and
- one edge e^{\prime} for each edge e in G such that e^{\prime} crosses e and is incident to the faces separated by e
- dual graph is unique for the embedding
- dual graph is planar

Spanning Trees

Definition: Spanning Tree

Given a connected graph $G=(V, E)$, a spanning tree is a tree $T=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$

- consider spanning tree of planar graph and
- its dual graph
- trees can be represented succinctly

Recap: Balanced Parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time to the bit vector

```
ab cd ef g h ij k
(()(()(()()))()(()()))
```

- excess $(i)=\operatorname{rank}^{\prime \prime}\left("(i+1)-\right.$ rank" $\left.^{\prime}\right) "(i+1)$
- fwd_search $(i, d)=$ $\min \{j>i: \operatorname{excess}(j)-\operatorname{excess}(i-1)=d\}$
- bwd_search $(i, d)=$

$$
\max \{j<i: \operatorname{excess}(i)-\operatorname{excess}(j-1)=d\}
$$

- findclose $(i)=$ fwd_search $(i, 0)$
- findopen $(i)=b w d _$search $(i, 0)$
- enclose $(i)=$ bwd_search $(i, 2)$

Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^{*}
- let T be spanning tree of G
- construct complementary spanning tree T^{*} of G^{*} using only edges not crossing edges in T
- edges are stored in adjacency lists

Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^{*}
- let T be spanning tree of G
- construct complementary spanning tree T^{*} of G^{*} using only edges not crossing edges in T
- edges are stored in adjacency lists

Definition: Incidence

Given a face f and a vertex v, an incidence of f in v is a pair of edges e, e^{\prime}, such that v is part of f and e, e^{\prime} are incident of f and consecutive in the adjacency list of v

Traversal of the Graph gives Traversal of Trees (1/2)

Lemma: Graph-Tree-Traversal

Given an embedding of G, a spanning tree T of G, and its complementary spanning tree T^{*} of the dual of G. When

- traversing T depth-first, starting at any node on the outer face
- processing edges in counter-clockwise order
- (for the root choose an arbitrary incidence of the outer face),
each edge not in T corresponds to the next edge visited in a depth-first traversal of T^{*}

Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed i edges, $(i+1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board

Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed i edges, $(i+1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed i edges, $(i+1)$-th edge is (v, w)
- if (v, w) is in not T, then
- visit new edge in T^{\prime}
- due to counter-clockwise visiting of nodes in G, going deeper in T^{*}
- example on the board

Succinct Planar Graph Representation

Succinct Graphs ($n=|V|$ and $m=|E|$)

- bit vector $A[0 . .2 m)$ with $A[i]=1 \Longleftrightarrow$ the i-th edge processed is in T

Succinct Planar Graph Representation

Succinct Graphs ($n=|V|$ and $m=|E|$)

- bit vector $A[0 . .2 m)$ with $A[i]=1 \Longleftrightarrow$ the i-th edge processed is in T
- $A=0110110101110010110100010100$

Succinct Planar Graph Representation

Succinct Graphs ($n=|V|$ and $m=|E|$)

- bit vector $A[0 . .2 m)$ with $A[i]=1 \Longleftrightarrow$ the i-th edge processed is in T
- bit vector $B[0 . .2(n-1))$ with $B[i]=$ " $("$ $\Longleftrightarrow i$-th time an edge in T is processed is the first time that edge is processed
- $A=0110110101110010110100010100$

Succinct Planar Graph Representation

Succinct Graphs ($n=|V|$ and $m=|E|$)

- bit vector $A[0 . .2 m)$ with $A[i]=1 \Longleftrightarrow$ the i-th edge processed is in T
- bit vector $B[0 . .2(n-1))$ with $B[i]=$ " $("$ $\Longleftrightarrow i$-th time an edge in T is processed is the first time that edge is processed
- $A=0110110101110010110100010100$
- $B=(()())(())(())$

Succinct Planar Graph Representation

Succinct Graphs ($n=|V|$ and $m=|E|$)

- bit vector $A[0 . .2 m)$ with $A[i]=1 \Longleftrightarrow$ the i-th edge processed is in T
- bit vector $B[0 . .2(n-1))$ with $B[i]=$ " $("$ $\Longleftrightarrow i$-th time an edge in T is processed is the first time that edge is processed
- bit vector $B^{*}[0.2(m-n+1))$ with $B^{*}[i]=$ " (" $\Longleftrightarrow i$-th time an edge not in T is processed is the first time that edge is processed
- $A=0110110101110010110100010100$
- $B=(()())(())(())$

Succinct Planar Graph Representation

Succinct Graphs ($n=|V|$ and $m=|E|$)

- bit vector $A[0 . .2 m)$ with $A[i]=1 \Longleftrightarrow$ the i-th edge processed is in T
- bit vector $B[0 . .2(n-1))$ with $B[i]=$ " $("$ $\Longleftrightarrow i$-th time an edge in T is processed is the first time that edge is processed
- bit vector $B^{*}[0 . .2(m-n+1))$ with $B^{*}[i]="("$ $\Longleftrightarrow i$-th time an edge not in T is processed is the first time that edge is processed
- $A=0110110101110010110100010100$
- $B=(()())(())(())$
- $B^{*}=()(()(()))()()$

Simple Planar Succinct Graph Operations (1/2)

- first (v) return i such that the first edge processed when visiting v is processed i-th during traversal
- next (i) return j such that next edge that is processed when visiting v by i-th edge is processed j-th during traversal
- mate(i return j such that edge is processed i-th and j-th during traversal
- vertex (i) return node v that is currently visited when processing i-th edge during traversal

Simple Planar Succinct Graph Operations (2/2)

- all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^{*}

Simple Planar Succinct Graph Operations (2/2)

- all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^{*}
- $A=0110110101110010110100010100$
- $B=(()())(())(())$
- $B^{*}=()(()(()))()()$
$\operatorname{first}(0)=0 \quad \operatorname{mate}(0)=3 \quad$ vertex $(3)=2$ $\operatorname{next}(0)=1 \quad \operatorname{mate}(1)=9 \quad$ vertex $(9)=1$ $\operatorname{next}(1)=10 \quad \operatorname{mate}(10)=16 \quad$ vertex $(16)=4$ $\operatorname{next}(10)=17 \quad \operatorname{mate}(17)=25 \quad$ vertex $(25)=6$

Getting the Degree

- while node has next
- increase counter and go to next
- return counter

Getting the Degree

- while node has next
- increase counter and go to next
- return counter
- running time depends of degree of node
- better running time preferable

Getting the Degree

- while node has next
- increase counter and go to next
- return counter
- running time depends of degree of node
- better running time preferable
- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(1)$
- mark in $D[0 . . m)$ nodes with degree $>f(m)$
© at most $m / f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0 . .2 m)$ (i) also sparse
- compressed sparse bit vectors require $o(m)$ space

Getting the Degree

- while node has next
- increase counter and go to next
- return counter
- running time depends of degree of node
- better running time preferable
- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(1)$
- mark in $D[0 . . m)$ nodes with degree $>f(m)$
© at most $m / f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0 . .2 m)$ (i) also sparse
- compressed sparse bit vectors require $o(m)$ space
- degree queries require only $O(f(m))$ time
- example on the board

Conclusion Succinct Planar Graphs

Lemma: Succinct Planar Graphs

Storing an embedding of a connected planar graph with m edges requires $4 m+o(m)$ bits and all nodes incident to a node can be iterated over in (counter-)clockwise order in constant time per edge. Finding the degree of a node can be done in $O(f(m))$ time for any function $f(m) \in \omega(1)$

Conclusion and Outlook

This Lecture

- succinct planar graphs

Advanced Data Structures

Conclusion and Outlook

This Lecture

- succinct planar graphs
- recap DFUDS

Advanced Data Structures

Conclusion and Outlook

This Lecture

- succinct planar graphs
- recap DFUDS

Next Lecture

- predecessor data structures
- range minimum queries

Advanced Data Structures

Project

- detailed information on the homepage
- implement predecessor and range minimum data structures
- deadline: 17.07.2023
- 2 pages report

Bibliography I

[Fer+20] Leo Ferres, José Fuentes-Sepúlveda, Travis Gagie, Meng He, and Gonzalo Navarro. "Fast and Compact Planar Embeddings". In: Comput. Geom. 89 (2020), page 101630. DOI: 10.1016/j. comgeo.2020.101630.
[Tur84] György Turán. "On the Succinct Representation of Graphs". In: Discret. Appl. Math. 8.3 (1984), pages 289-294. DOI: 10.1016/0166-218X(84)90126-4.

