Advanced Data Structures

Lecture 04: Predecessor and Range Minimum Query Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (o)(0): www.creativecommons.org/icenses/by-sa/4.0 commit c70729e compiled at 2024-05-06-10:19

https://pingo.scc.kit.edu/267787

Recap

Succinct Planar Graphs

- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- store whether edge is in spanning tree or not

Predecessor and Successor

Setting

- assume universe $\mathcal{U}=[0, u)$
- let $u=2^{w}$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w(1)$ since $n \leq u$

Definition: Predecessor \& Successor

Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are

- $\operatorname{pred}(A, x)=\max \{y \in A: y \leq x\}$
- $\operatorname{succ}(A, x)=\min \{y \in A: y \geq x\}$

Predecessor and Successor: Simple Solutions

- binary search
- $O(\log n)$ query time
- no space overhead
- using bit vector
- $O(1)$ query time
- $u+o(u)$ bits space

Predecessor of x in Bit Vector

- $z=\operatorname{rank}_{1}(x+2)$
- predecessor is $\operatorname{select}_{1}(z)$
0
0
0 1

111010010010000000001110000000001

- $\operatorname{rank}_{1}(21)=6$
- select $_{1}(6)=10$
- $\operatorname{pred}(19)=10$

Elias-Fano Coding [Eli74; Fan71] (1/3)

- n integers from universe $\mathcal{U}=[0, u)$
- split number in upper and lower halves
- upper half: $\lceil\log n\rceil$ most significant bits
- lower half: $\lceil\log u-\log n\rceil$ remaining bits

Upper Half

- monotonous sequence of $\lceil\log n\rceil$ bit integers
- not strictly monotonous
- let p_{0}, \ldots, p_{n-1} be sequence
- use bit vector of length $2 n+1$ bits
- represent p_{i} with a 1 at position $i+p_{i}$
- rank and select support requires $o(n)$ bits

Lower Half

- store lower half plain using $\left\lceil\log \frac{u}{n}\right\rceil$ bits
- $n \log \left\lceil\frac{u}{n}\right\rceil$ bits for lower half

0	1	2	3	4	5	6	7	8	9		
0	1	2	4	7	10	20	21	22	32		0: 000000
:---											
1: 000001											
2: 000010											
4: 000100											
7: 000111											

Elias-Fano Coding (2/3)

Access i-th Element

- upper: $\operatorname{select}_{1}(i)-i$
- lower: corresponding bits from lower bit vector

Predecessor x

- let x^{\prime} be $\lceil\log n\rceil$ MSB of x
- $p=\operatorname{select}_{0}\left(x^{\prime}\right)$ © selecto $_{0}(0)$ returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?

PINGO

- scanning $O(u / n)$ elements

0	1	2	3	4	5	6	7	8	9		
0	1	2	4	7	10	20	21	22	32		0: 000000
:---											
1: 000001											
2: 000010											
4: 000100											
7: 000111											

upper: 11101101000111000100
lower: 00011000111000011000

Elias-Fano Coding (3/3)

Lemma: Elias-Fano Coding

Given an array containing n distinct integers from a universe $\mathcal{U}=[0, u)$, the array can be represented using

$$
n\left(2+\log \left\lceil\frac{u}{n}\right\rceil\right) \text { bits }
$$

while allowing $O(1)$ access time and $O\left(\log \frac{u}{n}\right)$ predecessor/successor time

x-Fast Tries

- each number has w bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf
- store nodes in hash tables with bit prefix as key
- also store pointer to min and max in right and left subtree

- pointers to min and max are missing
- tree most likely not complete
- leaves are stored in doubly linked list
- using perfect hashing on each level requires $O(w n)$ space

x-Fast Tries: Queries

- traversing tree requires $O(w)$ time
- using binary search on levels requires $O(\log w)$ time
- if value not found go to min or max depending on query
- if value is found use doubly linked list to find predecessor or successor
- example on the board

y-Fast Tries

- x-fast trie requires $O(w n)$ space
- group w consecutive objects into one block B_{i}
- for each block B_{i} choose maximum m_{i} as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees
- x-fast trie requires $O(n)$ space
- search in x-fast trie requires $O(\log w)=O(\log \log n)$ time © For large n
- search in balanced binary tree requires $O(\log w)=O(\log \log n)$ time
example on the board

Dynamic y-Fast Trie

- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected

Range Minimum Queries

Setting

- array of n integers
- not necessarily sorted

Definition: Range Minimum Queries

Given an array of A of n integers

$$
r m q(A, s, e)=\underset{s \leq i \leq e}{\arg \min } A[i]
$$

returns the position of minimum in $A[s, e]$

0	1	2	3	4	5	6	7	8	9
8	2	5	1	9	11	10	20	22	4
$\begin{array}{r} r m q(0,9)=3 \\ r m q(0,2)=1 \\ r m q(4,8)=4 \end{array}$									

- naive in $O(1)$ time
- how much space does a naive $O(1)$-time

- using $O\left(n^{2}\right)$ space (i) $r m q(s, e)=M[s][e]$

Range Minimum Queries in $O(1)$ Time and $O(n \log n)$ Space

- instead of storing all solutions
- store solutions for intervals of length 2^{k} for every k
- M[0..n) $[0 . .\lfloor\log n\rfloor)$

Queries

- query $r m q(A, s, e)$ is answered using two subqueries
- let $\ell=\lfloor\log (e-s-1)\rfloor$
- $m_{1}=r m q\left(A, s, s+2^{\ell}-1\right)$ and $m_{2}=r m q\left(A, e-2^{\ell}+1, e\right)$
- $r m q(A, s, e)=\arg \min _{m \in\left\{m_{1}, m_{2}\right\}} A[m]$

Construction

$$
\begin{aligned}
M[x][\ell] & =r m q\left(A, x, x+2^{\ell}-1\right) \\
& =\arg \min \left\{A[i]: i \in\left[x, x+2^{\ell}\right)\right\} \\
& =\arg \min \left\{A[i]: i \in\left\{r m q\left(A, x, x+2^{\ell-1}-1\right),\right.\right. \\
& \left.\left.=r m q\left(A, x+2^{\ell-1}, x+2^{\ell}-1\right)\right\}\right\} \\
& =\arg \min \{A[i]: i \in\{M[x][\ell-1], \\
& \left.\left.=\quad M\left[x+2^{\ell-1}\right][\ell-1]\right\}\right\}
\end{aligned}
$$

- how much time do we need to fill the table?

PINGO

- dynamic programming in $O(n \log n)$ time

Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (1/2)

- divide A into blocks of size $s=\frac{\log n}{4}$
- blocks B_{1}, \ldots, B_{m} with $m=\lceil n / s\rceil$
- query $\operatorname{rmq}(A, s, e)$ is answered using at most three subqueries
- one query spanning multiple block
- at most two queries within a block each
- example on the board

Query Spanning Blocks

- use array B containing minimum within each block
- B has m entries
- use $O(n \log n$ data structure for B
- $O(m \log m)=O\left(\frac{n}{s} \log \frac{n}{s}\right)=$ $O\left(\frac{n}{\log n} \log \frac{n}{\log n}\right)=O(n)$
- use additional array B^{\prime} storing position of minimum in each block
- for queries within block use Cartesian trees

Cartesian Trees (1/2)

Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree $C(A)$ of a is a labeled binary tree with

- root r is labeled with
$x=\arg \min \{A[i]: i \in[0, n)\}$
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x+1, n))$ is if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in $O(n)$ time

Proof (Sketch)

- scan array from left to right
- insert each element by
- following rightmost path from leaf to root till element can be inserted
- everything below becomes left child of new node
- each node is removed at most once from the rightmost path
moving subtree to left child in constant time gives $O(n)$ construction time
- example on the board

Cartesian Trees (2/2)

Lemma: Equality of Cartesian Trees

Given two arrays A and B of length n with equal Cartesian trees, then

$$
r m q(A, s, e)=r m q(B, s, e)
$$

for all $0 \leq s<e<n$

Proof (Sketch)

- proof by induction over the size of the array
- if the array has size one, this is true
- assuming this is correct for arrays of size n, showing this for arrays of size $n+1$ uses recursive definition of Cartesian trees

Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (2/2)

Query Within a Block

- consider every possible Cartesian tree for arrays of size $s=\frac{\log n}{4}$
- tree can be represented using $2 s+1$ bits
- store bit representation of Cartesian tree for every block
- for every possible Cartesian tree and every start and end position store position of minimum
- $O\left(2^{2 s+1} \cdot s \cdot s \cdot \log s\right)=$

$$
O\left(\sqrt{n} \log ^{2} n \cdot \log \log n\right)=O(n) \text { space }
$$

Conclusion and Outlook

This Lecture

- successor and predecessor data structures
- range minimum query data structures

Advanced Data Structures

Bibliography I

[Eli74] Peter Elias. "Efficient Storage and Retrieval by Content and Address of Static Files". In: J. ACM 21.2 (1974), pages 246-260. DOI: 10.1145/321812.321820.
[Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.
[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press, 2016. ISBN: 978-1-10-715238-0.

