Johannes Fischer Advanced Data Structures

MSc-Vorlesung Wintersemester 2011/12 KIT

Preliminaries

- 5 ECTS
- lectures in German, slides etc. in English
- prequisites:
 - Algorithmen II
 - interest in discrete, combinatorial problems
- 15 lectures (NOT on December 8th)
- oral exam (20 mins)

Preliminaries

- course homepage: http://algo2.iti.kit.edu/1909.php
 - slides (& script)
 - hints for LaTeX and mathematical writing
- Johannes.Fischer@kit.edu (room 206)
- office hours: Monday 14-15 (NOT Dec. 5th)

No "Übungen"! Scribing!

- write script for one lecture
- material:
 - slides
 - my notes
 - research literature (NOT wikipedia etc.)
- use LaTeX \Rightarrow learn to write scientifically
- vector graphics: ipe, xfig, ...

Course Contents

- hashing
- predecessor
 data structures
- integer sorting/ searching
- distance oracles
- tree labelings

- lowest common/ level ancestors
- range (minimum) queries
- succinct trees
- text indexing (string B-trees)

Hashing

- set S of *n* objects from a LARGE universe U
- query for membership (+satellite info)
- Use space O(n), not O(|U|)

Hashing: lookup time

- chaining/linear probing:
 O(1) expected time
- cuckoo hashing:
 O(1) worst case time
- other operations O(I) amortized & expected

Predecessor Queries

- S: n objects from a SORTED universe U
- given $x \in U$, return max{ $y \le x : y \in S$ }
- fast if elements are integers: O(|g|g|U|)

Integer Sorting

- sort *n* elements from a universe [0,2^w-1]
- comparison based sorting: $\Theta(n \lg n)$
- counting sort: $O(n + 2^w)$
- with predecessor queries: $O(n \lg w)$
- signature sort:
 - O(n) for w sufficiently large
 - $O(n \log n)$ for all w

Distance Oracles

Lowest Common Ancestors

Level Ancestors

Range Minimum Queries

2d Range Reporting

String **B-Trees**

- text indexing in **external** memory
- substring queries (cf suffix tree/array)
- new challanges (minimize IOs)

Theory vs. Practice

- focus on theoretical (=mathematical) analysis of data structures
- BUT: most methods highly **practical** (perhaps with some engineering effort)
 - VL "Algorithm Engineering"
- every method better than naive approach (complex analysis #> slow running time)

Classification of DSs

What is a DS?

- extend functionality
 - ADT + DS = ADT' with ADT' \supseteq ADT
- tradeoff time/space

Implicit DS

 clever storage functionality "for free" • e.g. heap: $parent(x) = \left| \frac{x}{2} \right|$ 2 3 4 5 6 7 8