
Lecture 14:

String B-Trees (ctd.)
Cache-Oblivious DSs

Johannes Fischer

1

Reminder

• search tree of degree Θ(B) ⇒ height lgB N

‣ leaves: pointers to b strings [b = Θ(B)]

‣ internal: separators L(v1),R(v1),..., L(vb),R(vb)

• search P: at every node with children v1,...,vb

‣ load 1 block containing L(v1),...,R(vb): one IO

‣ load lg B strings & compare with P (bin. search)

- O(|P|/B) IOs per comparison

• total: O(lgB N× lg B× |P|/B) = O(|P|/B lg N)
2

The basic idea of String B-trees is to store the sorted su�xes in a B-tree layout with branching
factor b = ⇥(B), where b is chosen such that the information stored at one B-tree node fits into on
size B disk block.

An internal node v with children v1, . . . , v
b

stores separators L(v
i

) and R(v
i

) for every 1 i b,
where L(v

i

) (or R(v
i

)) is the lexicographically smallest (or largest respectively) su�x stored below
v
i

.
The tree can be best described bottom-up: Let b lexicographically consecutive su�xes form a

leaf (the last leaf might contain up to 2b strings). Then b0 consecutive leaves (from “left to right”)
form the nodes on level 1 (where b b0 2b) and so onm, until we have build the root with b
children.

Example

D = {alan,turing,ate,an,acid,apple}, b = 4

20 1 17 3 25 13 21 23 29 15 11 22 9 2 28 18 4 10 27 26 8 14 6 7

20 3 25 23 29 22 9 18

20 18 4 26 8 7

Note that the definition of String B-trees leaves some flexibility. For example, we could also
have included the last two leaves directly into the node containing the first four leaves, leading to
a tree of depth one less than the one shown in the picture. This flexibility is necessary to allow for
fast insertion and deletion of strings to/from D.

Given the basic String B-tree layout, we could now search the tree in a top-down manner, at
each node deciding by a search of P within the L(v1), R(v1), . . . , L(v

k

), R(v
k

) if and where the
search should be continued. The problem with this approach is that it creates a high number of
IOs: if the tree has height h = lg

b

N and the separators are searched in a binary manner, then this
would create order of

h · |P |
B

· lgB =
|P |
B

lgN (20)

IOs, which is worse than optimal by a factor of lgN . Nonetheless, two such searches will identify
the interval of all occurrences of P in D, which can be reported in additional O(occ

B

) IOs.

8

2 Chapter 7: String B-Trees

The purpose of String B-Trees is to index a large collection D = {S1, . . . , S
k

} of strings over ⌃ of
total length N =

P
i

|S
i

| such that substring-queries of the form

find(P,D) : return all occurrences of P 2 ⌃⇤ in D (19)

can be answered e�ciently. For the RAM model, we already know that su�x trees solve this task
optimally (at least for static collections of strings). In this chapter, we shall concentrate on the
external memory model, which basically measures the performance by the amount of I/O that is
generated and not by the time the CPU spends on the instance.

Further reading:

The String B-Tree: A New Data Structure for String Search in External Memory and its
Applications.

by Paolo Ferragina , Roberto Grossi

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939

2.1 The EM-Model

The external memory model is like the RAM model of computation,
except that the fast internal memory (RAM) is limited to M words,
and we have instances of size N >> M . Additionally there is
an external memory (disks) with unlimited size. An IO-operation
transfers a consecutive block of B words from the external to the
internal memory, where it can be manupulated by the CPU as usual.
The same amount may also be written back from RAM to disk to
make room for new data.

The performance of an EM-algorithm is the number of disk ac-

cesses it makes. As a simple example, consider the trivial task of
reading a string of length N > M that is stored consecutively on
disk. This takes O(N/B) IO’s in the EM-model.

2.2 Basic String B-Tree Layout

Let the strings from D be stored continiously on disk. We identify a string by its starting position.

Example

D = {alan,turing,ate,an,acid,apple}, B = 8

a l a n t u r i n g a t e a n a c i d a p p l e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

B=8

7

3

First Improvement

• add Patricia Tries (PT) to B-tree nodes

• PTS for string set S={S1,...,Sk}:

‣ compact trie over S (cf. suffix tree)

‣ edges: store 1st (branching) character & length

‣ size: O(k) [NOT O(|∑|Si||)!!!]

• blind search: skip characters not stored

‣ ↝ false matches

4

Correct Insertion Point
• say blind search ends at leaf λ

‣ compute L=LCP(P, λ)

‣ u: 1st node on root-to-λ path with d≥L chars

5

(1) d=L

u
c1 ci-1 ci

cx

P

... ...

, ci < PL+1 < ci+1 (2) d>L

c'

P

λ

u

(a) PL+1<c'
P

(b) PL+1>c'

Blind Search: IOs

6

• at every node with children v1,...,vb:

‣ load PTS: one IO with S=L(v1),...,R(vb)

‣ search PTS for λ: no IOs

‣ load one string and compare with P: O(|P|/B) IOs

‣ identification of insertion point: no IOs

• total: O(|P|/B lgB N) IOs

Second Improvement
• search for P:

‣ ...→ π → σ →...

• in PTπ:

‣ compute L=LCP(P, λ)

• all strings in σ begin
with L

⇒ in PTσ:

‣ compute L'=LCP(P, λ')
starting at P[L+1]

7

b
... ...

π=

σ=

L(σ)

R(σ)L(σ)

R(σ)

Final Complexity
• pass matched LCPs down the B-tree

• telescoping sum IOs

‣ height of B-tree h=lgB N

‣ Li = LCP-value on level i of String B-tree

• with L0 = 0 and Lh ≤ |P|:

‣ O(|P|/B + lgB N) IOs

• inserting P to D possible in O(|P|⋅h) IOs

8

�

M�L

0M � 0M��
&

Outlook on
Cache Oblivious

Data Structures

9

The Model
• Like EM:

‣ M: size of internal memory ≙ cache

‣ external memory ≙ RAM

‣ B: block transfer size

• Now: M & B unknown

‣ analysis over all values of M,B

• cache oblivious algorithm:

‣ achieves EM lower bound for all values of M,B

2 Chapter 7: String B-Trees

The purpose of String B-Trees is to index a large collection D = {S1, . . . , S
k

} of strings over ⌃ of
total length N =

P
i

|S
i

| such that substring-queries of the form

find(P,D) : return all occurrences of P 2 ⌃⇤ in D (19)

can be answered e�ciently. For the RAM model, we already know that su�x trees solve this task
optimally (at least for static collections of strings). In this chapter, we shall concentrate on the
external memory model, which basically measures the performance by the amount of I/O that is
generated and not by the time the CPU spends on the instance.

Further reading:

The String B-Tree: A New Data Structure for String Search in External Memory and its
Applications.

by Paolo Ferragina , Roberto Grossi

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939

2.1 The EM-Model

The external memory model is like the RAM model of computation,
except that the fast internal memory (RAM) is limited to M words,
and we have instances of size N >> M . Additionally there is
an external memory (disks) with unlimited size. An IO-operation
transfers a consecutive block of B words from the external to the
internal memory, where it can be manupulated by the CPU as usual.
The same amount may also be written back from RAM to disk to
make room for new data.

The performance of an EM-algorithm is the number of disk ac-

cesses it makes. As a simple example, consider the trivial task of
reading a string of length N > M that is stored consecutively on
disk. This takes O(N/B) IO’s in the EM-model.

2.2 Basic String B-Tree Layout

Let the strings from D be stored continiously on disk. We identify a string by its starting position.

Example

D = {alan,turing,ate,an,acid,apple}, B = 8

a l a n t u r i n g a t e a n a c i d a p p l e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

B=8

7

cache

RAM

10

• Example: Scanning N ≫ M items

‣ optimal O(N/B) in EM

‣ no need to know B ⇒ cache oblivious

• assumes optimal cache replacement

‣ otherwise always next block evicted ↝ M=1

‣ LRU is 2-competitive

• tall cache assumption: M = Ω(B2)

Thoughts on
CO-Model

11

Funnelsort
• k-funnel: black box for merging COly

‣ merge k sorted lists of total size k3

‣ O(k3/B lgM/B(k3/B)+k) IO's

‣ space k2

⇒ Funnelsort array A[1,N]:

1. split A into N1/3 segments (size N2/3)

2. sort each segment recursively

3. merge parts with N1/3-funnels

• IO: T(N)= N1/3T(N2/3)+O(N/B lgM/BN/B+N1/3)
 = O(N/B lgM/BN/B) [see blackboard]12

k-Funnels
• binary tree

‣ k leaves: input streams

‣ internal nodes: mergers

‣ output stream at root (≙merged input streams)

• buffers between merge nodes

• h=lg k levels with buffers

• size of buffers:

‣ on level h/2: k3/2

‣ 1 upper and k1/2 lower k1/2-funnels: recursively
13

... ...

k3/2

...k

k1/2

h/2

h/2

Example:16-Funnel

14

Cache-Oblivious Data Structures 38-5

Output
buffer

Input
buffers

!
"
#

!
$
%

!
&
'

!()
!()

!
&
'

!()
!()

!
$
%

!
&
'

!()
!()

!
&
'

!()
!()

FIGURE 38.6: A 16-merger consisting of 15 binary mergers. Shaded parts represent ele-
ments in buffers.

THEOREM 38.1 Let T be a complete binary tree with N leaves laid out using the van
Emde Boas layout. The number of memory transfers needed to perform a search (traverse
a root-to-leaf path) and a range query in T is O(logB N) and O(logB N + K

B), respectively.

The navigation from node to node in the van Emde Boas layout is straight-forward if the
tree is implemented using pointers. However, navigation using arithmetic on array indexes
is also possible [18]. This avoids the use of pointers and hence saves space.

The constant in the O(logB N) bound for searching in Theorem 38.1 can be seen to be
four. Further investigations of which constants are possible for cache-oblivious comparison
based searching appear in [9].

38.2.2 k-Merger

In the I/O-model the two basic optimal sorting algorithms are multi-way versions of Merge-
sort and distribution sorting (Quicksort) [2]. Similarly, Frigo et al. [20] showed how both
merge based and distribution based optimal cache-oblivious sorting algorithms can be de-
veloped. The merging based algorithm, Funnelsort, is based on a so-called k-merger. This
structure has been used as a basic building block in several cache-oblivious algorithms. Here
we describe a simplified version of the k-merger due to Brodal and Fagerberg [15].

Binary mergers and merge trees

A binary merger merges two sorted input streams into a sorted output stream: In one
merge step an element is moved from the head of one of the input streams to the tail of
the output stream; the heads of the input streams, as well as the tail of the output stream,
reside in buffers of a limited capacity.

Binary mergers can be combined to form binary merge trees by letting the output buffer
of one merger be the input buffer of another—in other words, a binary merge tree is a
binary tree with mergers at the nodes and buffers at the edges, and it is used to merge a set
of sorted input streams (at the leaves) into one sorted output stream (at the root). Refer
to Figure 38.6 for an example.

An invocation of a binary merger in a binary merge tree is a recursive procedure that
performs merge steps until the output buffer is full (or both input streams are exhausted); if

© L. Arge, G. S. Brodal, R. Fagerberg: Cache-Oblivious Algorithms. Chapter
 38 of Handbook of Data Structures and Applications, CRC Press 2005.

Lazy Filling

15

procedure FILL(v):
 while (v's output buffer not full)
 if (left input buffer empty)
 FILL(left child of v)
 if (right input buffer empty)
 FILL(right child of v)
 perform one merge step

Cache-Oblivious Data Structures 38-5

Output
buffer

Input
buffers

!
"
#

!
$
%

!
&
'

!()
!()

!
&
'

!()
!()

!
$
%

!
&
'

!()
!()

!
&
'

!()
!()

FIGURE 38.6: A 16-merger consisting of 15 binary mergers. Shaded parts represent ele-
ments in buffers.

THEOREM 38.1 Let T be a complete binary tree with N leaves laid out using the van
Emde Boas layout. The number of memory transfers needed to perform a search (traverse
a root-to-leaf path) and a range query in T is O(logB N) and O(logB N + K

B), respectively.

The navigation from node to node in the van Emde Boas layout is straight-forward if the
tree is implemented using pointers. However, navigation using arithmetic on array indexes
is also possible [18]. This avoids the use of pointers and hence saves space.

The constant in the O(logB N) bound for searching in Theorem 38.1 can be seen to be
four. Further investigations of which constants are possible for cache-oblivious comparison
based searching appear in [9].

38.2.2 k-Merger

In the I/O-model the two basic optimal sorting algorithms are multi-way versions of Merge-
sort and distribution sorting (Quicksort) [2]. Similarly, Frigo et al. [20] showed how both
merge based and distribution based optimal cache-oblivious sorting algorithms can be de-
veloped. The merging based algorithm, Funnelsort, is based on a so-called k-merger. This
structure has been used as a basic building block in several cache-oblivious algorithms. Here
we describe a simplified version of the k-merger due to Brodal and Fagerberg [15].

Binary mergers and merge trees

A binary merger merges two sorted input streams into a sorted output stream: In one
merge step an element is moved from the head of one of the input streams to the tail of
the output stream; the heads of the input streams, as well as the tail of the output stream,
reside in buffers of a limited capacity.

Binary mergers can be combined to form binary merge trees by letting the output buffer
of one merger be the input buffer of another—in other words, a binary merge tree is a
binary tree with mergers at the nodes and buffers at the edges, and it is used to merge a set
of sorted input streams (at the leaves) into one sorted output stream (at the root). Refer
to Figure 38.6 for an example.

An invocation of a binary merger in a binary merge tree is a recursive procedure that
performs merge steps until the output buffer is full (or both input streams are exhausted); if

Size of k-Funnel

• recall: size of buffers:

‣ on level h/2: k3/2

‣ upper and lower k1/2-funnels:
recursively

⇒ S(k)= k1/2 k3/2 + (k3/2 +1)S(k1/2)
 = Θ(k2)

16

... ...

IOs of k-Funnels (Idea)
• consider 1st recursive level where j-mergers

have size ≤ M/3 (coarsest level of detail)

• even though recursion continues, on level j
all work in cache ⇒ j3/B+j IO's for j3 elt.s

• only when input buffer empty: evict, fill j3
elements in input buffer, reload↝no extra IOs

• on path: only O(lgj k) such j-funnels, j=Ω(M1/4)

⇒ O(k3/B lgM(k)+k) ↝ O(k3/B lgM/B(k3/B)+k)

17

