Lecture 14:

String B-Trees (ctd.) Cache-Oblivious DSs

Johannes Fischer

Reminder

• search tree of degree $\Theta(B) \Rightarrow \text{height } \lg_B N$

leaves: pointers to b strings $[b = \Theta(B)]$

- internal: separators $L(v_1), R(v_1), \dots, L(v_b), R(v_b)$
- search P: at every node with children $v_1,...,v_b$
 - load I block containing $L(v_1),...,R(v_b)$: one IO
 - Ioad Ig B strings & compare with P (bin. search)
 - O(|P|/B) IOs per comparison
- total: $O(\lg_B N \times \lg B \times |P|/B) = O(|P|/B \lg N)$

First Improvement

- add **Patricia Tries** (PT) to B-tree nodes
- PT_S for string set $S = \{S_1, ..., S_k\}$:

compact trie over S (cf. suffix tree)

- edges: store 1st (branching) character & length
- size: O(k) [**NOT** $O(|\sum |S_i||)!!!]$
- blind search: skip characters not stored
 - \rightarrow false matches

Correct Insertion Point

- say blind search ends at leaf λ
- compute $L=LCP(P, \lambda)$ • *u*: Ist node on root-to- λ path with $d \ge L$ chars (1) $d=L, c_i < P_{L+1} < c_{i+1}$ (2) d>LU 🤌 Cj-(a) $P_{L+1} < c'$ (b) $P_{L+1} > c'$ Ρ

Blind Search: IOs

- at every node with children v_1, \dots, v_b :
 - load PT_s : **one** IO with $S=L(v_1),...,R(v_b)$
 - search PT_s for λ : **no IOs**
 - load **one** string and compare with P: O(|P|/B) IOs
 - identification of insertion point: no IOs
- total: $O(|P|/B \lg_B N) IOs$

Second Improvement

- search for *P*:
 - $\blacktriangleright \dots \rightarrow \pi \rightarrow \sigma \rightarrow \dots$
- in PT_{π} :
 - compute $L=LCP(P, \lambda)$
- all strings in σ begin with L
- \Rightarrow in PT_{σ} :
 - compute L'=LCP(P, λ')
 starting at P[L+1]

Final Complexity

- pass matched LCPs down the B-tree
- telescoping sum $\sum_{i \le h} \frac{L_i L_{i-1}}{B}$ IOs

• height of B-tree $h = \lg_B N$

- $L_i = LCP-value on level i of String B-tree$
- with $L_0 = 0$ and $L_h \leq |\mathsf{P}|$:

 $\bullet O(|P|/B + \lg_B N) |Os$

• inserting P to D possible in $O(|P| \cdot h)$ IOs

Outlook on Cache Oblivious Data Structures

The Model

- Like EM:
 - *M*: size of internal memory \triangleq cache
 - external memory \triangleq **RAM**
 - B: block **transfer** size
- Now: M & B unknown
 - analysis over **all** values of M,B
- cache oblivious algorithm:
 - achieves EM lower bound for all values of M,B

Thoughts on CO-Model

• Example: **Scanning** *N* >> *M* items

• optimal O(N/B) in EM

• no need to know $B \Rightarrow$ cache oblivious

- assumes **optimal** cache replacement
 - otherwise always next block evicted $\rightarrow M=I$
 - LRU is 2-competitive
- tall cache assumption: $M = \Omega(B^2)$

Funnelsort

- *k*-funnel: black box for **merging** COly
 - merge k sorted lists of total size k^3
 - $O(k^3/B \lg_{M/B}(k^3/B)+k) |O's|$
 - space k^2

\Rightarrow **Funnelsort** array A[1,N]:

- I. split A into $N^{1/3}$ segments (size $N^{2/3}$)
- 2. sort each segment recursively
- 3. merge parts with $N^{1/3}$ -funnels
- IO: $T(N) = N^{1/3}T(N^{2/3}) + O(N/B \lg_{M/B}N/B + N^{1/3})$ = $O(N/B \lg_{M/B}N/B)$ [see blackboard]

k-Funnels

- binary tree
 - k **leaves**: input streams
 - internal nodes: mergers
 - ▶ output stream at root (≜merged input streams)

 $k^{3/2}$

k

 $k^{1/2}$

- **buffers** between merge nodes
 - *h*=lg *k* levels with buffers
- size of buffers:
 - on level $h/2: k^{3/2}$
 - I upper and $k^{1/2}$ lower $k^{1/2}$ -funnels: recursively

Example: 16-Funnel Input buffers

© L.Arge, G. S. Brodal, R. Fagerberg: Cache-Oblivious Algorithms. Chapter 38 of Handbook of Data Structures and Applications, CRC Press 2005.

Size of k-Funnel

- recall: size of buffers:
 - on level $h/2: k^{3/2}$
 - upper and lower k^{1/2}-funnels: recursively

$$\implies S(k) = k^{1/2} k^{3/2} + (k^{3/2} + 1)S(k^{1/2}) \\ = \Theta(k^2)$$

IOs of k-Funnels (Idea)

- consider I^{st} recursive level where *j*-mergers have size $\leq M/3$ (**coarsest** level of detail)
- even though recursion continues, on level j all work in cache $\Rightarrow j^3/B+j$ IO's for j^3 elt.s
 - only when input buffer empty: evict, fill j^3 elements in input buffer, reload \rightarrow no extra IOs
 - on path: only $O(\lg_j k)$ such *j*-funnels, $j=\Omega(M^{1/4})$
- $\implies O(k^3/B \lg_M(k)+k) \rightarrow O(k^3/B \lg_{M/B}(k^3/B)+k)$