Lecture 14:

String B-Trees (ctd.) Cache-Oblivious DSs

Johannes Fischer

Reminder

- search tree of degree $\Theta(B) \Rightarrow$ height $\lg _{B} N$
- leaves: pointers to b strings $[b=\Theta(B)]$
- internal: separators $L\left(v_{1}\right), R\left(v_{1}\right), \ldots, L\left(v_{b}\right), R\left(v_{b}\right)$
- search P : at every node with children v_{1}, \ldots, v_{b}
- load I block containing $L\left(v_{1}\right), \ldots, R\left(v_{b}\right)$: one IO
- load $\lg B$ strings \& compare with P (bin. search)
- $O(|P| / B)$ IOs per comparison
- total: $O\left(\lg _{B} N \times \lg B \times|P| / B\right)=O(|P| / B \lg N)$
$D=\{$ alan, turing, ate, an, acid, apple $\}, B=8$

First Improvement

- add Patricia Tries (PT) to B-tree nodes
- PTs for string set $S=\left\{S_{I}, \ldots, S_{k}\right\}$:
- compact trie over S (cf. suffix tree)
- edges: store ${ }^{\text {st }}$ (branching) character \& length
- size: O(k) [NOT O $\left.\left(|\Sigma| S_{i}| |\right)!!!\right]$
- blind search: skip characters not stored
- \rightarrow false matches

Correct Insertion Point

- say blind search ends at leaf λ
- compute $L=\mathrm{LCP}(\mathrm{P}, \lambda)$
- u : $I^{\text {st }}$ node on root-to- λ path with $d \geq L$ chars

Blind Search: IOs

- at every node with children v_{1}, \ldots, v_{b} :
- load PTs: one IO with $S=L\left(v_{1}\right), \ldots, R\left(v_{b}\right)$
- search PT_{s} for λ : no IOs
- load one string and compare with $\mathrm{P}: \mathrm{O}(|P| / B)$ IOs
- identification of insertion point: no IOs
- total: $O\left(|P| / B \lg _{B} N\right) I O s$

Second Improvement

- search for P :

$$
\downarrow \ldots \rightarrow \pi \rightarrow \sigma \rightarrow \ldots
$$

- in PT_{π} :
- compute $L=\operatorname{LCP}(P, \lambda)$
- all strings in σ begin with L
\Rightarrow in PT_{σ} :
- compute $L^{\prime}=\mathrm{LCP}\left(\mathrm{P}, \lambda^{\prime}\right)$ starting at $P[L+1]$

Final Complexity

- pass matched LCPs down the B-tree
- telescoping sum $\sum_{i \leq h} \frac{L_{i}-L_{i-1}}{B}$ IOs
- height of B-tree $h=\lg _{B} N$
- $L_{i}=$ LCP-value on level i of String B-tree
- with $L_{0}=0$ and $L_{h} \leq|P|$:
- $\mathrm{O}\left(|P| / B+\lg _{\mathrm{B}} N\right) \mathrm{IOs}$
- inserting P to D possible in $O(|P| \cdot h)$ IOs

Outlook on Cache Oblivious Data Structures

The Model

- Like EM:
- M : size of internal memory $\xlongequal[=]{\text { cache }}$
- external memory $\xlongequal{\wedge}$ RAM
- B: block transfer size
- Now: M \& B unknown
- analysis over all values of M, B

- cache oblivious algorithm:
- achieves EM lower bound for all values of M, B

Thoughts on CO-Model

- Example: Scanning $N \gg M$ items
- optimal $O(N / B)$ in $E M$
- no need to know $B \Rightarrow$ cache oblivious
- assumes optimal cache replacement
- otherwise always next block evicted $\rightarrow M=1$
- LRU is 2 -competitive
- tall cache assumption: $M=\Omega\left(B^{2}\right)$

Funnelsort

- k-funnel: black box for merging COly
- merge k sorted lists of total size k^{3}
- $\mathrm{O}\left(k^{3 / B} \lg _{\mathrm{M} / \mathrm{B}}\left(k^{3} / B\right)+k\right) \mathrm{IO} \mathrm{s}$
- space k^{2}
\Rightarrow Funnelsort array $A[I, N]$:
I. split A into $N^{1 / 3}$ segments (size $N^{2 / 3}$)

2. sort each segment recursively
3. merge parts with $N^{1 / 3}$-funnels

- IO: $T(N)=N^{1 / 3} T\left(N^{2 / 3}\right)+O\left(N / B \lg _{M / B} N / B+N^{1 / 3}\right)$
$=O\left(N / B \lg _{\text {м } / \text { / }} N / B\right)$ [see blackboard]

k-Funnels

- binary tree
- k leaves: input streams
- internal nodes: mergers
- output stream at root (气 merged input streams)
- buffers between merg
- $h=\lg k$ levels with buffers
- size of buffers:
- on level $h / 2: k^{3 / 2}$

- I upper and $k^{1 / 2}$ lower $k^{1 / 2}$-funnels: recursively

Example:I6-Funnel

Input
buffers

© L.Arge, G. S. Brodal, R. Fagerberg: Cache-Oblivious Algorithms. Chapter 38 of Handbook of Data Structures and Applications, CRC Press 2005.

Lazy Filling

procedure FILL(v): while (v's output buffer not full)
if (left input buffer empty)
FILL(left child of v)
if (right input buffer empty)
FILL(right child of v) perform one merge step

Size of k-Funnel

- recall: size of buffers:
- on level $h / 2: k^{3 / 2}$
- upper and lower $k^{1 / 2}$-funnels: recursively

$$
\begin{aligned}
\Rightarrow S(k) & =k^{1 / 2} k^{3 / 2}+\left(k^{3 / 2}+1\right) S\left(k^{1 / 2}\right) \\
& =\Theta\left(k^{2}\right)
\end{aligned}
$$

IOs of k-Funnels (Idea)

- consider $I^{\text {st }}$ recursive level where j-mergers have size $\leq M / 3$ (coarsest level of detail)
- even though recursion continues, on level j all work in cache $\Rightarrow j^{3} / B+j I O$'s for j^{3} elt.s
- only when input buffer empty: evict, fill j^{3} elements in input buffer, reload \rightarrow no extra IOs
- on path: only $O\left(g_{j} k\right)$ such j-funnels, $j=\Omega\left(M^{1 / 4}\right)$
$\Rightarrow \mathrm{O}\left(k^{3} / B \lg _{M}(k)+k\right) \rightarrow O\left(k^{3} / B \lg _{M / B}\left(k^{3} / B\right)+k\right)$

