
Algorithms for Memory Hierarchies

Lecture 5

Lecturer: Nodari Sitchinava
Scribe: Mateus Grellert

Previosly

In Lecture 3 we have shown that the orthogonal line intersection reporting problem can be solved

with I/O complexity of:
∑|H|

i=1O

(
logB N +

Ki

B

)
I/Os per horizontal segment, so

TotalComplexity = O

(
N logB N +

K

B

)

Today

Today we will show that this can be improved to I/O complexity of:

O

(
N

B
log M

B

N

B
+
K

B

)
I/Os

1 Distribution Sweeping Technique

Distribution sweeping is a technique to solve batched offline problems I/O-efficiently. In batched
offline problems, we are given a set of all queries upfront and we want to answer each query, but
we don’t care in which order the answers arrive and don’t mind waiting for the answers to each
query till the end of the algorithm.

Prior to understanding the Distribution Sweeping Technique, let us consider a simple problem:
Batched Stabbing Query Problem (BSQP)

1.1 The Batched Stabbing Query Problem

Let’s suppose we have a set of one-dimensional ranges S = {s1, s2, ..., sN}, with each range in the
form (x1, x2) and a set of queries Q = {q1, q2, ..., qN}. Batched Stabbing Query Problem (BSQP)
asks to report for each element qi ∈ S, which ranges sj ∈ S contain qi. Another way to look at the
problem is to view the set S as horizontal segments and Q as infinite vertical lines (as depicted
in Figure 1). Then the BSQP asks to report for each vertical line qi, the segments that intersect
qi.

The following notation will be used in this explanation:

1

Figure 1: A set of horizontal segments stabbed by a series of vertical queries.

• x1(si): left x coordinate of segment i

• x2(si): right x coordinate of segment i

• x(qi): x coordinate of query i

Consider the following algorithm:

1. Sort objects by x coordinate (for segments, consider only the left coordinate). Considering
our example in Figure 1, this should output:
ordList = (s3, s1, s2, q1, q2, s4, q3, s5, q4)

2. Apply Algorithm 1 to the sorted sequence of segments and queries.

Data: ordList: list of queries and segments ordered by the x-coordinate (left endpoint in
case of segments)

for obj ∈ ordList do
if obj is a query then

A′ = ∅;
for each si ∈ A do

if x2(si) ≥ x(obj) then
report “si intersects obj” and copy si to A′;

end

end
set A← A′;

else /* obj is a segment */
append obj at the end of A;

end

end

Algorithm 1: Pseudocode for batched stabbing query problem.

Algorithm 1 performs a sweep of the sorted sequence of segments and queries and maintains the list
of active segments A. A segment becomes active when the sweep reaches the left endpoint of the
segment. When the sweep reaches a query, all active segments whose right endpoint’s x-coordinate
is greater than the query’s x-coordinate, contain the query and are reported. All active segments
whose right endpoint’s x-coordinate is smaller than the query’s x-coordinate are “deactivated” and
are removed from the active list.

Let’s analyze the time complexity of the Algorithm 1. Let N be the total number of segments
and queries and let Ki be the number of queries that intersect each segment si. Each query q is

2

touched once (outer for loop). Each segment si is touched once (when added to A), reported Ki

times and copied to A′ Ki times. Thus, the time complexity of the algorithm is

|Q|∑
i=1

1 +

|S|∑
i=1

(1 + 2Ki) = |Q|+ |S|+ 2|K| ≤ 2(N +K) = O(N +K)

Combining with the initial sorting step of N objects, we obtain the total time complexity of
O(N logN + K). Note, time complexity depends on the size of the output, thus, we once again
have an output-sensitive algorithm.

To determine the I/O complexity of Algorithm 1, we observe that copying and reporting is simply
scanning of contiguous data. Thus, the I/O-complexity for this algorithm (excluding the initial
sorting step) is scan(O(N + K)) = O(N

B + K
B). Combining with the initial sorting step of the

input, the total I/O-complexity equals:

TotalI/O = O

(
N

B
log M

B

N

B
+
K

B

)

1.2 Distribution Sweeping Framework

The BSQP works efficiently when only the horizontal segments have a limited length and the
queries are considered of infinite length. However, what if that’s not the case and the queries also
have a specific range? In order to solve this I/O-efficiently, we use a technique called Distribution
Sweeping Framework. For simplicity we assume that the coordinates of all objects are distinct.

The framework can be described as follows. Partition the space into Θ(M/B) vertical slabs, such
that each slab contains an equal number of object endpoints with distinct x-coordinate. Sweep the
objects in increasing y-coordinate, processing (e.g. reporting intersection among) the portions of
horizontal objects that fully span at least one slab and distributing the copies of objects into slabs
that contain the endpoints of the objects. Recursively process each slab until the slab contains at
most M objects. When a slab contains only M objects (a base case of the recursion), we load the
objects of the slab into memory and use internal memory algorithm to solve the problem.

Let us use distribution framework on a specific problem of orthogonal line segment intersection
reporting: given a set of horizontal and vertical segments, report all pairs of segments that inter-
sect.

We first divide the space into Θ(M/B) vertical slabs. Consider a single slab σj and only the vertical
segments within σj and only the portions of the horizontal segments that span σj . In the example
of Figure 2 in the third slab we only consider q3, q4 and portion of s3 fully spanning the slab. We
want to report intersections between these segments. (Note, that interesection between s4 and q4
will be reported during recursive call.) Observe, that when we only consider these objects within
the third slab, the problem of reporting intersections between these objects is exactly BSQP. Thus,
to report intersections at this recursive level, we sweep the objects in increasing y-coordinate and
maintain Θ(M/B) active lists (one for each slab). But now, the vertical segments act as segments
and horizontal segments act as queries. When the sweep encounters a bottom endpoint of a vertical
segment, it adds it to the active list of the slab containing that vertical segment. We also add the
vertical segment to the list of objects of the slab that contains it (for the recursive call). When the
sweep encounters the horizontal segment, we scan each active list of the slabs which are spanned
by the horizontal segment and report intersections as in Algorithm 1. We also add the copies of
the horizontal segment into the lists of objects of the slabs which contain the endpoints (for the
recursive call). After the sweep completes, we recursively call the procedure on each slab. At the
base of the recursion, each slab list contains at most M objects, so we load them into memory and
solve them in internal memory.

3

Figure 2: Similar to the BQSP, but with slabs dividing the space.

Note, that to solve a single Batched Stabbing Query Problem we need to keep only 3 blocks in
internal memory: one block for set S of sorted elements, one block for list A and one block for list
A′. Thus, we can solve Θ(M/B) BSQP problems simultaneously.

Note, that in each recursive call the lists of objects in each slab must be sorted in increasing
y-coordinates. If we sort the objects by the y-coordinate at the beginning, the lists for each slab
are also created in sorted order by increasing y-coordinate.

The last thing that we must determine is how to determine the slab boundaries at each recursive
level so that each slab contains equal number of objects. This is done by sorting the end-points by
the x-coordinate, picking boundaries deterministically, storing them in an array and looking up
the slab boundaries in this array at each recursive level. Since in the base case each slab contains
Θ(M) objects, there will be at most O(N/M) slabs throughout the algorithm, and, therefore, the
size of this array is at most O(N/M), i.e. does not affect the asymptotic space complexity.

I/O Complexity: Let us analyze the I/O complexity of each recursive call. First, we need to
read the slab boundaries. The most number of slabs is in the base case of the recursion, where
each slab contains Θ(M) objects, thus, there are at most O(N/M) boundaries to read. Even if
we spend 1 I/O to read each boundary, we still spend at most O(N/M) < O(N/B) I/Os for this
step. Next, we perform the sweep solving BSQP problem. As we have seen in the previous section,

it takes O

(
N

B
+
Kk

B

)
I/Os, where Kk is the number of intersection reported at this recursive

level.

Summing up over logM/B
N
M recursive levels, we get the I/O complexity of the recursive calls:

logM/B
N
M∑

k=1

O

(
N

B
+
Kk

B

)
= O

N
B

logM/B

N

M
+

logM/B
N
M∑

k=1

Kk

B

At the base case of the recursion, we load O(N/M) slabs each of size Θ(M) into internal memory
(to solve using internal memory algorithm). Let K ′ be the number of intersections that are reported
in all base cases. Then, this step takes O(N/M ·M/B +K ′/B) = O(N/B +K ′/B) I/Os.

4

Thus, the total I/O complexity is:

O

N
B

logM/B

N

M
+

logM/B
N
M∑

k=1

Kk

B
+
N

B
+
K ′

B

= O

N
B

(
1 + logM/B

N

M

)
+

K ′

B
+

logM/B
N
M∑

k=1

Kk

B

= O

(
N

B
logM/B

N

B
+
K

B

)
,

where K is the total number of intersection reported over all levels, i.e. K = K ′ +∑logM/B
N
M

k=1 Kk.

Internal Memory Version: When we have enough space in the internal memory, we can

apply the same algorithm, but using only 2 slabs instead of
M

B
resulting in O(N logN) time

complexity.

1.3 Distribution Sweeping Applications

This framework can be used for batched geometric problems, such as:

1. General (non-orthogonal) line segment intersection reporting

2. Orthogonal range reporting (see Figure 3)

Figure 3: For each rectangle, which points fall inside of it?

3. Rectangle intersections problem – report all pairs of rectangles on the plane that over-
lap/intersect (by combining solutions to orthogonal line segment intersection reporting and
orthogonal range reporting)

4. Two-dimensional Stabbing Queries

5. d-dimensional extensions of these problems (the I/O complexity increases by a factor of
O(logM/B N/B) for each dimension)

6. Two-dimensional point location/ray-shooting – given a set of non-intersecting line segments
and points on the plane, report for each point the line segment directly above the point

5

	Distribution Sweeping Technique
	The Batched Stabbing Query Problem
	Distribution Sweeping Framework
	Distribution Sweeping Applications

