
Algorithms for Memory Hierarchies

Lecture 9

Lecturer: Nodari Sitchinava
Scribe: Mihai Herda

In this lecture we will consider funnels – a cache-oblivious data structure that we will use for
building funnel heap, a cache-oblivious priority queue.

1 Funnel data structure

T0

T1 T2 T3 T4 T5

k
3

k
3/2

k
3/2

k
3/2

k
3/2

k
3/2

k
3/2

k
3/2

k
3/2

Funnels are cache-oblivious data structures used for merging sorted sequences. We can view
them as binary trees that have an input buffer at each leaf, and an output buffer at the root. A
funnel with k leaves is called a k-funnel. The size of the output buffer of a k-funnel is k3. A
k-funnel has 2k − 1 nodes. We can view a k-funnel as consisting of

√
k + 1

√
k-funnels, one at the

top and one for each leaf of the top
√
k-funnel, with output buffers of the bottom funnels acting as

the input buffer for the top one. In the example above, T0 is the top
√
k-funnel, T1, T2, . . . , T√k.

The size of a buffer connecting two
√
k-funnels is

√
k

3
= k

3
2 . Funnels are using the van Emde Boas

1

memory layout, the top
√
k-funnel is stored first, followed by the leaf

√
k-funnels. For our example

the memory layout would be: T0T1T2 . . . T√k. The
√
k-funnels are also using the van Emde Boas

memory layout. The smallest funnel is the 2-funnel and its output buffer size is 23 = 8.

2 Filling the output buffer

v

w

u
Bv

Bw

Bu

Fill(u)
while Bu not full do

if Bv empty then
Fill(v);

end
if Bw empty then

Fill(w);
end
perform one merge step;

end

Procedure Fill(u)

When filling the buffer Bu we check before each merge step if the buffers Bv and Bw of the two
children still contain any elements. If that is not the case, we fill the buffer that is empty.

Theorem 1. The space complexity of a k-funnel, excluding the input and output buffers, is O(k2).

Proof. The space complexity of the k-funnel is defined by the recurrence:

S(k) = S(
√
k) +

√
kS(
√
k) +

√
kk

3
2

= (1 +
√
k) · S(

√
k) + O(k2)

= O(k2) (1)

Theorem 2. Assuming M = Ω(B2), a merging step using k-funnel that output k3 elements takes

O(k
3

B logM
B

k3

B) I/Os.

Proof. Let a k̄-funnel be the largest funnel that fits in main memory. It will take O(k̄2) space, with
k̄2 ≤M . We shall call it a base funnel (see Figure 1).

Consider the path beginning at the root and ending at a leaf of the k-funnel. There will be
log k
log k̄

= logk̄ k base funnels on this path (see Figure 2).

2

loaded in memory

k
3

_

k-funnel
_

Figure 1: A base funnel – the largest k-funnel that fits in internal memory.

k

k

k

k

k

k
k-funnel

Figure 2: A path within a k-funnel consisting of base funnels.

3

The I/O complexity of merging k̄3 in a k̄-funnel is: O
(
k̄ + k̄3

B

)
I/Os. Since the next biggest

funnel is the k̄2-funnel with size O(k̄4) > M > B2, k̄2

B > 1⇒ k̄3

B > k̄. And, therefore, O
(
k̄ + k̄3

B

)
=

O
(
k̄3

B

)
Therefore, we spend O(1

B) I/O’s per element when operating on base funnels. Each element

passes through log k
log k̄

base funnels. Then the total of I/O’s that an element needs to go from an

input buffer to an output buffer of a k-funnel is:

O(
1

B
· log k

log k̄
) = O(

1

B

log k

logM
)

= O(
1

B
logM k)

Because we process k3 elements, the total I/O will be:

O

(
k3

B
logM k

)
= O

(
k3

B
logM/B k3

)
= O

(
k3

B

(
logM/B

k3

B
+ logM/B B

))
Assuming M = Ω(B2), logM/B B ≤ logB B = 1 and the total I/O complexity of merging using

a k-funnel outputting k3 items from k sorted streams is

O

(
k3

B
logM

B

k3

B

)
.

3 Funnel sort

Now we show how we can implement a cache-oblivious merge sort using funnels. We cannot simply
use an N -funnel because it will take too much space. Instead we will use the following recursive
procedure.

1. Split A into N
1
3 sub-arrays ;

2. Recursively sort each sub-array ;
3. Merge the N

1
3 streams using a N

1
3 -funnel ;

Procedure Sort(A)

4

> > > >...

1/3
N

...

2/3
N

2/3
N

2/3
N

2/3
N

sorted sequence

The space complexity of funnel sort is defined by the following recursion

S(k) = O(k) + O(N
2
3) = O(N)

The I/O complexity of funnel sort is:

Q(N) = N
1
3Q(N

2
3) + O(

N

B
logM

B

N

B
)

= O(
N

B
logM

B

N

B
)

which is optimal I/O complexity of sorting N items.

4 Funnel heap

In this section we describe a cache-oblivious priority queue based on the funnel heap data structure.

5

Ai

Bi

ki

3
ki

3
ki

Si1 Si2 Siki
...

{

{

{Si

L i

2 - merger

The funnel heap consists of multiple chained links. The image above shows one link Li. It
consists of a ki-funnel with an output buffer Bi. A 2-merger then merges the elements of the buffer
Bi with the elements of the next link and outputs them in the Ai buffer. The size of the Ai and
Bi buffers is k3

i . The size of the ki input buffers to the ki-merger is si.
The sizes si and ki for each link Li are defined recursively as follows.

(k1, s1) = (2, 8)

(ki, si) =
(
dd 3
√
siee, si−1 · (ki−1 + 1)

)
,

where ddxee represent the smallest number that is a power of 2 and is greater than x.
The links L1, L2, . . . are connected to each other as follows:

L1 L2

L3

LMax

Funnel heap maintains the items in heap order, meaning the items on the path from the first
element of buffer A1 to every leaf sij are in in non-decreasing order. Thus, the smallest element in
the heap is always the element A1[0]. This leads to the following simple procedure for the priority
queue DeleteMin() operation. That is we fill the buffer A1 if it’s empty and return the smallest
element in it.

Obviously, the hardest part is maintaining the heap order during the insertion.

6

DeleteMin()
if A1 empty then

Fill(A1);
end
Return and delete A1[0] ;

Insert(x)

1. Let Sij be the first empty leaf buffer;

2. Empty all Lr(r < i) by marking Ai as empty and repeatedly calling DeleteMin();

3. Empty the path from Sij to Ai ;

4. Merge the two sorted sequences producing a single sorted sequence of all the removed items;

5. Place the sorted items on the path from A1 to Sij in such a way that the buffers Ar(r ≤ i)
and Bi contain the same number of items as before they were removed from it;

Note that the removed elements will fit in the buffers on the path because the total items
remaining after all buffers Ar(r ≤ i) and Bi have been filled is at most

∑i−1
r=1 sr · (kr + 1), which is

at most |sij | = si by definition of si.
In order to analyse the I/O complexity observe that an item might participate in the removal

(and merging) multiple times. However, each time it is removed, it will never be placed in a funnel
of lower links than where it was removed from. And once it reaches the largest link Li (with largest
i) in its lifetime, it will move in the future only upward and to the left. The number of I/Os it’ll
spend going up the link Li is at most O

(
1
B · si

)
.

Thus, the total I/Os that we spend on moving the item up within the funnels is

i∑
r=1

O

(
1

B
logM sr

)
= O

(
i∑

r=1

1

B
logM 2(4/3)r

)
= O

(
i∑

r=1

1

B
(4/3)r · logM 2

)

= O

(
1

B
(4/3)iMax · logM 2

)
= O

(
1

B
· logM 2(4/3)iMax

)
= O

(
1

B
· logM (sMax)

)
= O

(
1

B
· logM N

)
= O

(
1

B
· logM/B

N

B

)

The last equality is under our usual assumption that M = Ω(B2).
Thus, the amortized I/O complexity of DeleteMin() and Insert(x) operations on the cache-

oblivious priority queue is O
(

1
B · logM/B

N
B

)
, just like in the EM model.

7

5 Applications

Using the cache-oblivious priority queue we can implement all the graph algorithms we have con-
sidered in the EM model.

8

	Funnels
	Filling the output buffer
	Funnel sort
	Funnel heap
	Applications

