
Algorithms for Memory Hierarchies
Lecture 12

Lecturer: Nodari Sitchinava
Scribe: Fabian Klute, Romain Gratia

1 List ranking in O(sortp(N))

Last time we discussed List ranking in O(sortp(N)log∗(N)) I/O’s, today we will get rid of the
log∗(N) factor. As a general reminder the algorithm we saw last time did the following:

1. Find independent set of size Θ(N)

2. Bridge out the nodes, which are in the independent set

3. Solve the problem recursively on the remaining items

4. Bridge the nodes back in

We showed how we can do this in the PEM model using a technique called deterministic coin
tossing. But still we remain with a non constant factor of log∗(N) for the I/O’s.
To understand the first step of our new algorithm we look back at the list ranking algorithm
from last time. We can see that deterministic coin tossing is nothing else, than a colouring
of the nodes and the number of repetitions of the colouring determine the number of colors.
In fact if we repeat the process t times we get an O(logt(N)) colouring. We will call this a
k colouring Now we will use the induced colors and sort the nodes by color. We get groups
and want the first group G0 to contain the most nodes. Now for each group Gi we add the
group to the independent set and remove all their neighbours in other groups. Trivially we
can do this at start with G0, then with G1 since all neighbours G0 and G1 have are already
deleted and so on. Thus we get a valid independent set. The I/O complexity here is in
O(sortp(N) + ksortp(N)) = O((k + 1)sortp(N)) = O(sortp(N) logt(N)). Now it looks like we
did not win anything, still there is a logarithmic factor in the I/O complexity.

1.1 Delayed Pointer processing

To get pure sorting complexity we introduce a new technique called ”Delayed pointer process-
ing”. We start as above.

1. Run the deterministic coin toss algorithm t times. O(tsortp(N))

2. Store with each item their colors and ID’s of neighbours O(sortp(N))

3. Group the nodes by colors, such that G0 contains the most nodes O(sortp(N))

1

So far nothing special happened. As above we add G0 to the independent set and, if a node
in G0 has a neighbour in another group, add to that group a duplicate. Now for each group do
the following:

1. Sort the group and remove the duplicated nodes O(sortp(Ni)))

2. Add the remaining nodes to the independent set O(scanp(Ni))

3. Add duplicates to the appropriate groups O(scanp(Ni)) + logt(N)

The I/O complexity can be written as:

O(sortp)(N) +
k−1∑
i=1

sortp(Ni) + logt(N)

= sortp(N) +
k∑

i=1

N

PB
logM

B

Ni

B

≤ sortp(N) +
1

PB
logM

B

N

B

k∑
i=1

Ni + (logtN)2)

= O(sortp)(N)) + (logtN)2)

Now we still have a logarithmic factor in our equation, but if we choose the number of pro-
cessers appropriatly we can eliminate it. The question is for which values of p is the logarithmic
factor dominating. Obviously we have to solve this inequation:

N

PB
logM

B

N

B
< (logtN)2

Shifting it to p yields:

p <
N

B(logt(N))2
= O(

N

B logN

2 Parallel Distribution Sweeping

The aim here is to adapt the distribution sweeping technique to multicores architectures. The
I/O complexity reached on this kind of architecture with p cores is at best:

O(N
B
logM

B
(N
B

) + k
pB

)

But in this lesson is going to limit to a solution whose I/O complexity is:

O(N+k
B
logM

B
(N+k

B
) = O(sortp(N + k))

Let

d = min{

√
N

p
;
M

B
; p}

2

2.1 General Algorithm

Algorithm:

1. Partition the space into d vertical slabs & p horizontal slabs with equal number of objects
in each slab

2. Preprocess objects in each vertical slab using all processors (specific for a problem)

3. Sweep each horizontal slab using one processor. Process all horizontal objects that span
¿ 1 vertical slabs, distribute objects into appropriate slab lists

4. Recursively solve the problem on each vertical slab (allocate proportional number of
processors)

Base case: one processor per slab runs sequential I/O efficient solution.

2.2 The Batched Stabbing Query Problem

Algorithm:

1. Partition the space into d vertical slabs & p horizontal slabs with equal number of objects
in each slab

2. Count for each portion of horizontal segment hi that spans σj how many vertical segments
hi intersects σj. Readjust horizontal slab boundaries such that each slab cointains θ(N

p
)

vertical segment & θ(k
p
) copies of horizontal segment (using prefix sum).

3. Create a copy of each hi that spans σj & intersect > 1 vertical segment or has endpoint
in σj in σj’s slab list. Create copies of vertical segments in σj in σj’s slab list

4. Recursively solve the problem on each vertical slab (allocate proportional number of
processors)

Figure 1: Divisions in slabs

3

Base case: run sequential I/O efficient line/segment intersection solution.

Now we need to detail a little more the step 2:

a Set weights in each slab σj as follows: +1 on bottoms end point and -1 on top end point

b Run prefix sums: this allows to know how many an horizontal line intersects vertical lines
as only sums which differs from 0 are those which are intersected:

Figure 2: Prefix sum uses to count intresections

2.3 I/O complexity per recursive call in the case of The Batched
Stabbing Query Problem

• Second step: Q(N,P)

• Third step:scan(N
p

) + scan(kk
p

)) 6 O(N
pB

+ k
pB

)

I/O complexity of base case: O(N
′

B
logM

B
(N

′

B
) + k

B
)

With ih this case: N ′ = θ(N+k
p

)

Total I/O complexity:

Total =

logdp∑
k=1

O(Q(N ; p) +
N + k

pB
) +O(

N + k

pB
logM

B
(
N + k

pB
) +

k

B
)

4

Q(N ; p) = O(N
′′

pB
+ logp) = O(N

′′

pB
) 6 O(N+k

pB
)

If we consider that the copies have been done.

Total =

logdp∑
k=1

O(
N + k

pB
) +O(

N + k

pB
logM

B
(
N + k

pB
) +

k

pB
)

Total =

logdp∑
k=1

O(
N + k

pB
) +O(

N + k

pB
logM

B
(
N + k

pB
))

Total = O(
N + k

pB
logdp) +O(

N + k

pB
logM

B
(
N + k

pB
))

Total = O(
N + k

pB
logM

B
(
N + k

pB
))

Total = O(sortp(N + k))

In sequential I/O solution:

O(
N

B
logM

B

N

B
+
k

B
) = sort(N) + scan(k)

5

