
Lecture 2:
Construction of

Suffix Arrays
Johannes Fischer

1

Taxonomy6 S. J. Puglisi et al.

Fig. 2. Taxonomy of suffix array construction algorithms.

Normally prefix-doubling algorithms initialize SA1 for h = 1 using a linear-time
bucket sort. The main idea [Karp et al. 1972] is as follows:

OBSERVATION 1. Suppose that SAh and ISAh have been computed for some h > 0,
where i = SAh[j] is the j th suffix in h-order and h-rank[i] = ISAh[i]. Then, a sort using
the integer pairs

(ISAh[i], ISAh[i + h])

as keys, i+h ≤ n, computes a 2h-order of the suffixes i. (Suffixes i > n−h are necessarily
already fully ordered.)

The two main prefix-doubling algorithms differ primarily in their application of this
observation:

—Algorithm MM does an implicit 2h-sort by performing a left-to-right scan of SAh that
induces the 2h-rank of SAh[j] − h, j = 1, 2, . . . , n;

—Algorithm LS explicitly sorts each h-group using the ternary-split quicksort (TSQS)
of Bentley and McIlroy [1993].

MM [Manber and Myers 1990, 1993].
Algorithm MM employs Observation 1 as follows:

If SAh is scanned left to right (thus, in h-order of the suffixes), j = 1, 2, . . . , n, then the suffixes

i − h = SAh[j] − h > 0

are necessarily scanned in 2h-order within their respective h-groups in SAh.

ACM Computing Surveys, Vol. 39, No. 2, Article 4, Publication date: June 2007.

source: Puglisi/Smyth/Turpin ACM Computing Surveys ’072

Induced Sorting

• [Nong/Zhang/Chan DCC’09] sais-algorithm:

✓ O(n) in theory

✓ fast in practice

✓ as simple as Kärkkäinen/Sanders DC3

3

Algorithm sais
• Definition: suffix T[i,n] called

‣ S-type iff T[i..n] <lex T[i+1..n] (T[n,n]='$' always S)

‣ L-type otherwise

1. Choose sample: leftmost S (predecessor is L), |S*|<1/2n

2. Sort S*-suffixes by recursion

‣ on new text formed by sorted S*-substrings

3. Scan A from left to right (say we‘re at pos. i):

‣ if T[A[i]-1] is L, write A[i]-1 to 1st pos. in bucket

4. like (3), but sorting S-suffixes in a right-to-left scan

‣ if T[A[i]-1] is S, write A[i]-1 to last pos. in bucket
4

T = c
0 1 2 3 4 5 6 7 8 9 10 11 12

a b c c b a a a b b a $
L LS⇤ S L L S⇤ S S L L L S⇤

$
S

a
L S

b
L S

c
L

12 6 1

11
10

5

9
4

0

3

2
1

8
7

6
5

Sorting S*-Substrings
• Same algorithm, but with UNSORTED S*-suffixes

1. Choose sample: leftmost S (call them S*), |S*|<1/2n

2. Put S*-substrings in their buckets (in text order)

3. Scan A from left to right (say we‘re at pos. i):

‣ if T[A[i]-1] is L, write A[i]-1 to 1st pos. in bucket

4. like (3), but sorting S-substrings in a right-to-left scan

6

Correctness
• 2 main points:

‣ S-substrings > L-substrings in same bucket

‣ order of suffixes in reduced substring
≙ order in original string

• full proof: consult section 3.2 in:

‣ Ge Nong, Sen Zhang, Wai Hong Chan:
Two Efficient Algorithms for Linear Time Suffix Array
Construction.
IEEE Trans. Computers 60(10): 1471-1484 (2011)

7

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zhang:Sen.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zhang:Sen.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Chan:Wai_Hong.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Chan:Wai_Hong.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/tc/tc60.html#NongZC11
http://www.informatik.uni-trier.de/%7Eley/db/journals/tc/tc60.html#NongZC11

