Lecture 2: Construction of Suffix Arrays

Johannes Fischer

source: Puglisi/Smyth/Turpin ACM Computing Surveys '07

Induced Sorting

- [Nong/Zhang/Chan DCC'09] **sais**-algorithm:
 - \checkmark O(n) in theory
 - \checkmark fast in practice
 - ✓ as simple as Kärkkäinen/Sanders DC3

Algorithm sais

- Definition: suffix *T*[*i*,*n*] called
 - ▶ S-type iff T[i..n] <_{lex} T[i+1..n] (T[n,n]='\$' always S)
 - L-type otherwise
- I. Choose sample: leftmost S (predecessor is L), |S*|<1/2n
- 2. Sort S*-suffixes by **recursion**
 - on new text formed by sorted S*-substrings
- 3. Scan A from left to right (say we're at pos. i):
 - if T[A[i]-I] is **L**, write A[i]-I to 1st pos. in bucket
- 4. like (3), but sorting S-suffixes in a right-to-left scan
 - if T[A[i]-1] is **S**, write A[i]-1 to **last** pos. in bucket

Sorting S*-Substrings

• Same algorithm, but with UNSORTED S*-suffixes

I. Choose sample: leftmost S (call them S*), |S*|<1/2n

2. Put S*-substrings in their buckets (in **text** order)

- 3. Scan A from left to right (say we're at pos. i):
 - ▶ if T[A[i]-1] is L, write A[i]-1 to 1st pos. in bucket
- 4. like (3), but sorting **S** substrings in a right-to-left scan

Correctness

- 2 main points:
 - S-substrings > L-substrings in same bucket
 - order of suffixes in reduced substring
 ≙ order in original string
- full proof: consult section 3.2 in:
 - Ge Nong, Sen Zhang, Wai Hong Chan: Two Efficient Algorithms for Linear Time Suffix Array Construction. IEEE Trans. Computers 60(10): 1471-1484 (2011)