
Modern Information Retrieval

Chapter 10
Parallel and Distributed IR

with Eric Brown
Introduction
A Taxonomy of Distributed IR Systems
Data Partitioning
Parallel IR
Cluster-based IR
Distributed IR
Federated Search
Retrieval in Peer-to-Peer Networks

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 1

Introduction
The volume of online content today is staggering and it
has been growing at an exponential rate
On at a slightly smaller scale, the largest corporate
intranets now contain several million Web pages
As document collections grow larger, they become
more expensive to manage
In this scenario, it is necessary to consider alternative
IR architectures and algorithms
The application of parallelism and distributed computing
can greatly enhance the ability to scale IR algorithms

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 2

Data Partitioning

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 5

Data Partitioning
IR tasks are typically characterized by a small amount
of processing applied to a large amount of data
How to partition the document collection and the
index?

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 6

Data Partitioning
Figure below presents a high level view of the data
processed by typical search algorithms

D
o
c
u
m
e
n
t
s

Indexing Items
k1 k2 . . . ki . . . kt

d1 w1,1 w2,1 . . . wi,1 . . . wt,1

d2 w1,2 w2,2 . . . wi,2 . . . wt,2

. .
dj w1,j w2,j . . . wi,j . . . wt,j

. .
dN w1,N w2,N . . . wi,N . . . wt,N

Each row represents a document dj and each column
represents an indexing item ki

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 7

Data Partitioning
Document partitioning slices the matrix horizontally,
dividing the documents among the subtasks
The N documents in the collection are distributed
across the P processors in the system
During query processing, each parallel process
evaluates the query on N/P documents
The results from each of the sub-collections are
combined into a final result list

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 8

Data Partitioning
In term partitioning, the matrix is sliced vertically

It divides the indexing items among the P processors

In this way, the evaluation procedure for each document
is spread over multiple processors
Other possible partition strategies include divisions by
language or other intrinsic characteristics of the data
It may be the case that each independent search server
is focused on a particular subject area

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 9

Collection Partitioning
When the distributed system is centrally
administered, more options are available
The first option is just the replication of the collection
across all search servers
A broker routes queries to the search servers and
balances the load on the servers:

Broker

Search
Engine

Search
Engine

Search
Engine

Search
Engine

Search
Engine

User
Query

Result

User
Query

Result

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 10

Collection Partitioning
The second option is random distribution of the
documents
This is appropriate when a large document collection
must be distributed for performance reasons
However, the documents will always be viewed and
searched as if they are part of a single, logical collection
The broker broadcasts every query to all search servers
and combines the results for the user

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 11

Collection Partitioning
The final option is explicit semantic partitioning of the
documents
Here the documents are either already organized into
semantically meaningful collections
How to partition a collection of documents to make
each collection “well separated” from the others?

Well separated means that each query maps to a distinct
collection containing the largest number of relevant documents

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 12

Inverted Index Partitioning
We first discuss inverted indexes that employ document
partitioning, and then we cover term partitioning
In both cases we address the indexing and the basic
query processing phase
There are two approaches to document partitioning in
systems that use inverted indexes

Logical document partitioning
Physical document partitioning

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 18

Logical Document Partitioning
In this case, the data partitioning is done logically using
the same inverted index as in the original algorithm
The inverted index is extended to give each processor
direct access to their portion of the index
Each term dictionary entry is extended to include P
pointers into the corresponding inverted list
The j-th pointer indexes the block of document entries
in the inverted list associated with the sub-collection in
the j-th processor

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 19

Logical Document Partitioning
Extended dictionary entry for document partitioning

term i

P0

P1
P2

P3

Dictionary Inverted List
 Term i

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 20

Logical Document Partitioning
When a query is submitted to the system, the broker
initiates P parallel processes to evaluate the query
Each process executes the same document scoring
algorithm on its document sub-collection
The search processes record document scores in a
single shared array of document score accumulators
Then, the broker sorts the array of document score
accumulators and produces the final ranking

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 21

Physical Document Partitioning
In this second approach, the documents are physically
partitioned into separate sub-collections
Each sub-collection has its own inverted index and the
processors share nothing during query evaluation
When a query is submitted to the system, the broker
distributes the query to all of the processors
Each processor evaluates the query on its portion of the
document collection, producing a intermediate hit-list
The broker then collects the intermediate hit-lists from
all processors and merges them into a final hit-list
The P intermediate hit-lists can be merged efficiently
using a binary heap-based priority queue

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 23

Physical Document Partitioning
Each process may require global term statistics in order
to produce globally consistent document scores
There are two basic approaches to collect information
on global term statistics

The first approach is to compute global term statistics at indexing
time and store these statistics with each of the sub-collections
The second approach is to process the queries in two phases
1. Term statistics from each of the processes are combined into

global term statistics
2. The broker distributes the query and global term statistics to

the search processes

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 24

Physical Document Partitioning
To build the inverted indexes for physically partitioned
documents, each processor creates its own index
In the case of replicated collections, indexing the
documents is handled in one of two ways

In the first method, each search server separately indexes its
replica of the documents
In the second method, each server is assigned a mutually
exclusive subset of documents to index and the index subsets are
replicated across the search servers

A merge of the subsets is required at each search
server to create the final indexes
In either case, document updates and deletions must
be broadcast to all servers in the system

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 25

Comparison
Logical document partitioning requires less
communication than physical document partitioning

Thus, it is likely to provide better overall performance

Physical document partitioning, on the other hand,
offers more flexibility

E.g., document partitions may be searched individually

The conversion of an existing IR system into a parallel
system is simpler using physical document partitioning
For either document partitioning scheme, threads
provide a convenient programming paradigm for
creating the search processes

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 26

Term Partitioning
In term partitioning, the inverted lists are spread across
the processors
Each query is decomposed into items and each item is
sent to the corresponding processor
The processors create hit-lists with partial document
scores and return them to the broker
The broker then combines the hit-lists according

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 27

Term Partitioning
The queries can be processed concurrently, as each
processor can answer different partial queries
However, the query load is not necessarily balanced,
and then part of the concurrency gains are lost
Hence, the major goal is to partition the index such that:

The number of contacted processors/servers is minimal; and
Load is equally spread across all available processors/servers

We can use query logs to split the index vocabulary
among the processors to achieve the goal above
A complementary technique is to process the query
using a pipeline of processors

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 28

Overall Comparison
Document partitioning affords simpler inverted index
construction and maintenance than term partitioning
Assuming each processor has its own I/O channel and
disks, document partitioning performs better
When terms are uniformly distributed in user queries,
term partitioning performs better
In fact, Webber et al show that term partitioning results
in lower utilization of resources
More specifically, it significantly reduces the number of
disk accesses and the volume of data exchanged

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 29

http://portal.acm.org/citation.cfm?id=1265490

Overall Comparison
The major drawback of document partitioned systems:

Many not needed operations are carried out to query
sub-collections possibly containing few relevant documents

The main disadvantage of term partitioning:
It have to build and maintain the entire global index, which limits
its scalability

In addition, term partitioning has a larger variance
regarding answer time and fixing this needs more
complicated balancing mechanisms

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 30

Suffix Arrays
We can apply document partitioning to suffix arrays in a
straight forward fashion
As before, the document collection is divided among the
P processors and each partition is treated as an
independent collection
The system can then apply the suffix array construction
techniques to each of the partitions
During search, the broker broadcasts the query to all of
the search processes
Then the intermediate results are merged into a final
hit-list

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 31

Suffix Arrays
If all of the documents will be kept in a single collection,
we can still exploit the parallel processors to reduce
indexing time
In the suffix array construction algorithm for large texts,
each of the merges of partial indexes is independent
Therefore all of the O((n/M)2) merges may be run in
parallel on separate processors
After all merges are complete, the final index merge
may be performed

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 32

Suffix Arrays
In term partitioning for a suffix array, each processor is
responsible for a lexicographical interval of the array
During query processing, the broker distributes the
query to the processors that contain the relevant
portions of the suffix array and merges the results
Note that when searching the suffix array, all of the
processors require access to the entire text
However, on a single parallel computer with shared
memory, the text may be cached in shared memory

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 33

	Introduction
	A Taxonomy
	Data Partitioning
	Data Partitioning
	Data Partitioning
	Data Partitioning
	Collection Partitioning
	Collection Partitioning
	Collection Partitioning
	Collection Partitioning
	Collection Selection
	Collection Selection
	Collection Selection
	Collection Selection
	Inverted Index Partitioning
	Logical Document Partitioning
	Logical Document Partitioning
	Logical Document Partitioning
	Logical Document Partitioning
	Physical Document Partitioning
	Physical Document Partitioning
	Physical Document Partitioning
	Comparison
	Term Partitioning
	Term Partitioning
	Overall Comparison
	Overall Comparison
	Suffix Arrays
	Suffix Arrays
	Suffix Arrays
	Signature Files
	Signature Files
	Parallel Computing
	Parallel Computing
	Parallel Computing
	Parallel Computing
	Performance Measures
	Performance Measures
	Performance Measures
	Performance Measures
	Parallel IR
	Parallel IR
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on SIMD Architectures
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Cluster-based IR
	Cluster-based IR
	Cluster-based IR
	Cluster-based IR
	Cluster-based IR
	Distributed Computing
	Distributed Computing
	Distributed Computing
	Distributed Computing
	Goals and Key Issues
	Goals and Key Issues
	Goals and Key Issues
	Dependability
	Communication
	Communication
	Indexing
	Indexing
	Indexing
	Dependability
	Dependability
	Communication
	External Factors
	External Factors
	External Factors
	Query Processing
	Query Processing
	Query Processing
	Query Processing
	Query Processing
	Query Load Balancing
	Query Load Balancing
	Query Load Balancing
	Dependability
	Dependability
	Dependability
	Dependability
	Communication
	Communication
	Communication
	Communication
	Communication
	Communication
	External Factors
	External Factors
	Web Issues
	Web Issues
	Federated Search
	Federated Search
	Federated Search
	Federated Search
	Query Processing
	How to merge the results?
	How to merge the results?
	How to merge the results?
	How to merge the results?
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks

